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Cellular telephony and wireless Internet access are creating a growing

demand for high quality wireless communications. Unfortunately, the current

wireless communication infrastructure is not fully equipped to offer these un-

precedented data rates and quality of service. The major obstacles include lim-

ited bandwidth availability, limited transmit power, and fluctuations in signal

strength which are intrinsic to the wireless channel. Future wireless standards

are relying on innovative core technologies such as multiple-input multiple-

output (MIMO) communications to overcome these problems. The spatial

dimension due to antenna arrays at the transmitter and receiver of MIMO

communication systems can be exploited by sophisticated signal processing

techniques to offer high link capacity, enhanced resistance to interference, and

robustness to channel fading.
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The benefits of MIMO technology are obtained through a combination

of antenna arrays that can provide spatial diversity and algorithms that can

adapt to the propagation channel. Antenna arrays have to be designed to be

robust in different propagation scenarios and provide the degrees of spatial di-

versity expected by the algorithms. The algorithms can adaptively reconfigure

the transmission methods by tracking the changing channel conditions. The

premise of the work presented in this dissertation is that antenna arrays and

algorithms at the physical layer can be designed, based on performance met-

rics from different layers, to exploit the channel spatial selectivity, resulting in

improved system performance.

This dissertation presents performance analysis and design methodol-

ogy of MIMO arrays, employing pattern diversity technique, in spatially corre-

lated channels. The proposed array designs consist of collocated circular patch

antennas, or circular patch arrays (CPAs). The benefit of pattern diversity,

obtained through CPAs, over conventional space diversity technique is first

demonstrated through analysis. Then a novel design methodology for compact

MIMO arrays optimized with respect to microwave theory and communication

theoretic metrics for given size constraints is proposed. This dissertation also

presents adaptive algorithms at the physical layer to switch between different

MIMO transmission schemes, based on statistical channel information. These

adaptive algorithms exploit the spatial selectivity inherent in the channel and

are designed to enhance the spectral efficiency of next generation wireless sys-

tems, for predefined target error rate.
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Chapter 1

Introduction

1.1 Overview on MIMO Communication Systems

Wireless networking and communication is rapidly becoming an intrin-

sic part of the social and business fabric worldwide. The number of cellular

telephone subscribers has surpassed the number of fixed subscribers in many

countries in the world and, in next few years, wireless communication is ex-

pected to be the preferred method of Internet access [5]. Wireless commu-

nication is attractive because it offers flexibility and mobility with moderate

infrastructure costs. As wireless communication shifts from a luxury to ne-

cessity, expectations about the capabilities of wireless devices are growing. In

cellular voice systems, there is a growing resentment towards poor quality by

users, who hate dropped calls, and by network providers, who cannot bear

the resulting churn of users from their network. In parallel, there is a growing

demand for high-speed wireless Internet access in homes and businesses [6, 7]

that offers data rates comparable to digital subscriber lines, cable modems, and

leased-lines. Unfortunately, current wireless communication systems are not

fully equipped to offer quality and data rates that are competitive with wireline

systems. The major problems include limited available bandwidth, low trans-

mit power, and signal fading intrinsic to the wireless channel. Fortunately,

1



innovative technologies such as multiple-input multiple-output (MIMO) com-

munication are being developed to boost quality and capability of wireless

links.

A MIMO communication channel is created when there are antenna

arrays at both the transmitter and receiver. Through the use of sophisticated

signal processing techniques, MIMO communication can offer high link capac-

ity, enhanced resistance to interference, and link robustness or reductions in

fading thanks to diversity. Channel capacity represents the number of bits of

information per second that can be reliably transmitted over the wireless link

within the frequency band of operation. Link robustness is measured by the

number of error bits received per unit of time, or bit error rate. These benefits

translate into higher data rate transmissions and better coverage. The bene-

fits of MIMO technology are provided by the additional degrees of freedom in

multidimensional wireless links not available in single antenna systems. These

multiple degrees of freedom can be exploited in different ways through a variety

of MIMO transmission techniques. Spatial multiplexing schemes are designed

to enable simultaneous transmission of multiple data streams yielding higher

capacity than single antenna systems, for the same available bandwidth. Di-

versity techniques are conceived to reduce the error rate by encoding the same

transmit data across different antennas and time slots through space-time en-

coders.

MIMO communication is taking a central role in all the major next

generation wireless standards including IEEE 802.11n for wireless local area
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networks (WLANs) [8–10], IEEE 802.16e for wireless metropolitan area net-

works (WMANs) [11, 12], 3rd generation partnership project (3GPP) [13–15]

and 4G communication for next generation of cellular telephony systems.

1.2 MIMO Antenna and Algorithm Design in Corre-
lated Channels

In practical communications systems, the performance of a MIMO link

is affected by the spatial distribution of the multipaths in the propagation en-

vironment [16]. Multipaths are essentially multiple wavefronts impinging the

receive array with different phases and amplitudes, producing random varia-

tions in signal strength across different array elements. This channel effect is

known as spatial selectivity. When the propagation channel consists only of

a few multipaths, the channel fluctuations are statistically less likely to occur

and the signals measured at different antennas of the array are “spatially”

correlated. Spatial correlation may have adverse effects on the performance

of MIMO systems, since it limits the degrees of freedom available in the wire-

less link. MIMO antenna arrays can be designed to reduce the spatial corre-

lation, producing additional degrees of diversity and improved performance.

Similarly, space-time encoders can be conceived to adaptively reconfigure the

MIMO arrays, based on the channel spatial correlation, to efficiently utilize

the wireless resources.

Antenna arrays and space-time encoders at the physical layer involve

different design challenges. The antennas can be treated, in practice, as part
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of a separate “layer”. Design and analysis of the physical layer involve tools

from signal processing and communication theory, whereas the antennas and

RF are designed and analyzed using microwave theory and computational elec-

tromagnetics. Physical layer performance is measured using bit error rate and

capacity. Antenna array performance is measured using bandwidth and an-

tenna gain. The capabilities of the physical layer are constrained by processing

capability and power consumption, while the antenna geometry is limited by

available surface area and near-field effects such as mutual coupling. The per-

formance metrics and the constraints of each of these layers have no direct

connection and conventional designs of single-antenna wireless systems treat

them separately. In MIMO systems, however, the physical layer performance

is determined in a complex way by algorithms that operate on the multivariate

propagation channel as viewed by the transmit and receive arrays. Therefore,

MIMO antenna arrays and algorithms can be designed by accounting for met-

rics derived from different layers.

The motivation for this antenna and algorithm design methodology is

the nested dependency between layers as illustrated in Fig. 1.1. The spatial

correlation is a function of both channel characteristics (e.g., angle spread,

angles of arrival/departure, number of scatterers) and array parameters (e.g.,

array geometry, element spacing, element pattern, polarization, mutual cou-

pling), and affects the performance of the space-time processors at the physical

layer. Hence, the antenna arrays can be designed, based on metrics from both

microwave theory (i.e., bandwidth, antenna gain) and communication the-
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Figure 1.1: Successive layers of function in a MIMO wireless communication link.

ory (i.e., capacity, error rate), to reduce the spatial correlation resulting in

improved system performance. Similarly, the adaptive algorithms can be con-

ceived to switch between different MIMO schemes and array configurations,

thus exploiting the spatial selectivity of the channel, yielding enhancement in

spectral efficiency.

1.3 Summary of the Contributions

Several antenna array designs for MIMO systems have been suggested

in the past few years, by employing space/polarization/pattern diversity tech-

niques. Space diversity is enabled by antennas placed far apart to produce

uncorrelated signals across different array sensors and their performance have

been widely analyzed in [16–24]. To exploit polarization and pattern diver-

sity, the antennas are designed to radiate with orthogonal polarizations and

radiation patterns as a means to create uncorrelated channels across differ-
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ent array elements. The benefits of polarization/pattern diversity have been

demonstrated through analysis and measurements in [25–31]. Previous works,

however, do not analyze the effect of the antenna radiation patterns on the

capacity and error rate performance of pattern diversity. Moreover, though

different MIMO antenna designs have been proposed thus far, the current lit-

erature has not proposed design criteria and methodology for MIMO arrays

accounting for the channel effects. Both these problems are studied in this

dissertation.

The diversity provided by the channel through the antenna arrays can

be exploited in a MIMO system by the use of space-time encoders at the trans-

mitter, and space-time processing at the receiver as a means to enhance system

performance. Different MIMO space-time techniques have been designed to

provide capacity gain through spatial multiplexing [32–34] or diversity advan-

tage through orthogonal space-time block codes (OSTBC) [35–37]. Recently

a new scheme called double space-time transmit diversity (D-STTD) has been

proposed in [38] to obtain both capacity and diversity gains. Another com-

mon MIMO transmission technique is beamforming [39,40], where single data

stream is weighted by the coefficients of a spatial filter and transmitted over

all the antennas. Adaptive switching between these MIMO schemes is a key

solution to further exploit the diversity of the channel and provide additional

gains in spectral efficiency. This dissertation also proposes new analysis and

practical designs of adaptive transmission methods that switch between dif-

ferent MIMO schemes to enhance the spectral efficiency of wireless systems.
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We summarize the main contributions presented in this dissertation as

follows:

1) Analysis and design of MIMO arrays of circular patch antennas exploiting

pattern diversity. This item includes:

• New closed-form expressions of the spatial correlation coefficients of ar-

rays of circular patch antennas in spatially correlated MIMO channel

models.

• New closed-form expressions of the spatial correlation coefficients of uni-

form linear arrays in correlated channels. These expressions are used for

studies on pattern diversity.

• Analysis of the benefit of pattern over space diversity techniques in real-

istic channel models. The performance of pattern diversity is evaluated

as a function of the antenna radiation patterns.

• New metrics to evaluate the performance of MIMO arrays, exploiting

pattern diversity, that account for channel clustering.

• Novel design methodology for MIMO arrays, exploiting pattern diversity,

in correlated channel models. We present the problem statement and

solution of the proposed optimization algorithm for arrays of circular

patch antennas.

2) Analysis and design of adaptive MIMO algorithms exploiting the spatial

selectivity of MIMO channels. This item includes:
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• New closed-form capacity expressions for different MIMO schemes in

spatially correlated channels.

• Capacity tradeoffs between different MIMO transmission schemes.

• New closed-form expressions of the error rate performance for different

MIMO schemes in spatially correlated channels.

• Practical adaptive MIMO transmission algorithm exploiting the spatial

selectivity of wireless channels. Two different techniques are proposed

for practical implementations of this adaptive algorithm.

The proposed solutions and techniques may be directly applicable to

future MIMO wireless systems that are currently in the process of being stan-

dardized by IEEE 802.11n, IEEE 802.16e and 3GPP standard bodies.

1.4 Notation

This section gives the notation used throughout this proposal. We use

CN(0, 1) to denote a random variable with real and imaginary parts that are

i.i.d. according to N(0, 1/2); Cm×n to denote a complex matrix with dimen-

sions m × n, ∗ to denote conjugation; T to denote transposition, † to denote

conjugation and transposition; | · | to denote the absolute value; || · ||2 to denote

the vector two-norm; 〈·, ·〉 to denote the complex vector space inner-product;

∗ to denote the convolution; ⊗ to denote the Kronecker product; and E [·] to

denote the ensemble average.
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1.5 Organization of Dissertation

Chapter 2 presents an overview on correlated MIMO channel models,

used for analysis and performance evaluation of the antenna/algorithm designs

presented in this dissertation. Chapter 3 presents analytical results describ-

ing the benefit of pattern over space diversity. Chapter 4 describes the novel

design methodology for MIMO arrays exploiting pattern diversity. The capac-

ity analysis of adaptive MIMO systems is given in Chapter 5, while the BER

analysis is reported in Chapter 6. Chapter 7 presents the practical adaptive al-

gorithm with applications to the IEEE 802.16e standard. Finally, conclusions

are drawn in Chapter 8.
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Chapter 2

Background on MIMO Channel Models

Channel models are one essential component in systems analysis in

that they enable performance prediction and comparison of different systems

designs in realistic propagation environments. This chapter first provides an

overview on clustered spatial channel models that are used to predict the per-

formance of the antenna and algorithm designs proposed in this dissertation.

Then it describes the concept of spatial selectivity that is exploited by the

proposed designs. Finally, it reviews analytical models for deterministic and

stochastic MIMO channel models.

2.1 Introduction

Spatially correlated MIMO channels are typically derived under certain

assumptions about the scattering in the propagation environment. One popu-

lar correlation model, which we call the clustered channel model, assumes that

groups of scatterers are modeled as clusters located around the transmit and

receive antenna arrays. Clustered channel models have been validated through

measurements [41,42] and variations have been adopted in different standards

such as the IEEE 802.11n Technical Group (TG) [43], for wireless local area
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networks (WLANs), and the 3GPP Technical Specification Group (TSG) [44],

for third generation cellular systems.

There are two popular approaches to simulate correlated MIMO chan-

nels based on methods derived from single-input multiple-output (SIMO) chan-

nel models (see [45] and the references therein). The first one is a deterministic

approach, which generates the MIMO channel matrix based on a geometrical

description of the propagation environment (i.e., ray-tracing techniques). The

second one is a stochastic method, where the spatial correlation across MIMO

channels is reproduced by a suitable choice of transmit and receive spatial cor-

relation matrices. Deterministic models are used to predict the performance

of MIMO communication systems in realistic propagation environments, since

they describe accurately the spatial characteristics of wireless links. Stochastic

models (ex. the Kronecker model [16, 46]) are defined using a reduced set of

channel parameters (i.e., angle spread, mean angle of arrival/departure) and

are suitable for theoretical analysis of correlated MIMO channels.

In theoretical analyses of MIMO systems, it may be desirable to study

capacity and error rate performance accounting for spatial correlation effects,

due to the propagation channel and the transmit/receive arrays. For this pur-

pose, the channel spatial correlation has to be expressed in closed-form as a

function of channel and array parameters. In [47], exact expressions of the spa-

tial correlation coefficients were derived for different spatial distributions (i.e.,

uniform, Gaussian, Laplacian) of angles of departure/arrival for uniform linear

arrays (ULAs). This solution, however, is expressed in terms of sums of Bessel
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functions and does not show a direct dependence of the spatial correlation on

the channel/array parameters.

In this chapter, we propose new closed-form expressions of the spatial

correlation matrices in clustered MIMO channels. We assume a Laplacian

distribution of the angles of arrival/departure, which has been demonstrated

to be a good fit for the power angular spectrum [48–51] and is practically used

by different standards channel models [4,43,44]. The key insight is that a small

angle approximation, which holds for moderate angle spreads (i.e., less than

∼ 10o), allows us to derive a closed-form solution for the spatial correlation

function. Using our method, we can avoid the numerical integration in [47]

and can easily obtain the correlation as a function of angle spread and arrivals.

We develop these results for the commonly used uniform linear array (ULA)

and extend these results to the uniform circular array (UCA), perhaps the

next most common array geometries for future generation access points. To

validate our model, we compare it against existing deterministic and stochastic

channel models. To make the comparison, we propose a novel distance metric,

derived from the mutual information of the MIMO channel, to evaluate the

relative performance of deterministic and stochastic channel models. Then

we evaluate this metric in different propagation conditions and show that, for

angle spreads lower than ∼ 10o, our model is a good fit to the more realistic

deterministic models.

Besides the analytical tractability, another main benefit of the proposed

method versus existing channel models, as we demonstrate, is a reduction in
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computational complexity and thus computation time required to compute

the spatial correlation matrices. Because the spatial correlation matrices are a

function of the cluster size and location, which are often modelled as random,

system level simulations will require averaging over many correlation realiza-

tions. For example, in the context of network simulators, where many users

and channels need to be simulated [52–59], and in detailed propagation stud-

ies of the effect of correlation [60, 61], the computational burden to simulate

spatially correlated MIMO channels is a relevant issue. Our proposed channel

model enables network simulations with significant computational saving, on

the order of 10 to 1000 times compared to existing methods.

2.2 Description of Clustered Channel Models

One common technique for modeling multi-path propagation in indoor

environments is the Saleh-Valenzuela model [41,62], where waves arriving from

similar directions and delays are grouped into clusters. Using this method,

a mean angle of arrival (AOA) or departure (AOD) is associated with each

cluster and the AOAs/AODs of the sub-paths within the same cluster are

assumed to be distributed according to a certain probability density function

(pdf). The pdf of the AOAs/AODs is chosen to fit the empirically derived

angular distribution of the AOAs/AODs, or power angular spectrum (PAS),

of the channel. The size of a cluster is measured by the cluster angular spread

(AS) defined as the standard deviation of the PAS.

We denote the PAS with SΩ(Ω), where Ω = (φ, θ) is the solid angle,
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φ is the azimuth angle and θ is the elevation angle. Note that the PAS over

the θ angles is generally assumed to be independent from the φ angles [4],

and we write SΩ(Ω) = Sφ(φ)Sθ(θ). Moreover, although the AOAs/AODs are

physically distributed over the three dimensional space, it has been proven

through channel measurements that most of the energy is localized over the

azimuth directions [4]. Under this assumption, we define Sφ(φ) = Pφ(φ)∗δ(φ−

φc), with δ(φ) being the delta function and φc the mean angle of arrival of the

cluster, and Sθ(θ) = δ(θ − π/2) to simplify our analysis.

A graphical representation of the clustered channel model is given in

Fig. 2.1 for the two dimensional space. Without loss of generality, we focus

on modeling the receiver spatial correlation. Multiple scatterers around the

receive array are modeled as clusters. We use the angle φc to denote the

mean AOA of one cluster. Within the same cluster, each propagation path is

characterized by an angle of arrival φ0 and is generated according to a certain

PAS. Depending on the system bandwidth, the excess delay across different

paths may not be resolvable. In this case, multiple AOAs are defined with an

offset φi relative to the mean AOA of the propagation path (φc). In typical

channel models for indoor environments [43], the propagation paths within the

same clusters are generated with the same mean AOA as the cluster and we

assume φ0 = φc.

Several distributions have been proposed thus far to approximate the

empirically observed PAS: the n-th power of a cosine function and uniform

distributions [63–66], the Gaussian probability density function (pdf) [67], and
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Figure 2.1: Geometry of the model representing clusters and propagation
paths. The angles φc and φ0 are the mean AOAs of the cluster and prop-
agation paths, respectively. The angle φi is the AOA offset of the path.

the Laplacian pdf [49–51,62,68–70]. Through recent measurement campaigns

in indoor [50,51,62,69] and outdoor [48,49,68] environments, it has been shown

that the PAS is accurately modelled by the truncated Laplacian pdf, given by

Pφ(φ) =

{
β√
2σφ

· e−|
√

2φ/σφ| if φ ∈ [−π, π);

0 otherwise
(2.1)

where φ is the random variable describing the AOA offset with respect to the

mean angle φc, σφ is the standard deviation (RMS) of the PAS, and β = 1/(1−

e−
√

2π/σφ) is the normalization factor needed to make the function integrate

to one. The Laplacian pdf is also used by different standards bodies as in
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[4, 43,44].

2.3 Channel Spatial Selectivity

The spatial selectivity is the result of multipath waves impinging the

receiver from different spatial directions [71]. The impinging wavefronts add

up constructively and destructively at the receiver, such that the received

signal changes randomly from one location to the other as the receiver moves.

In MIMO communication systems the effect of the channel spatial selectivity

is to create uncorrelated signals across different antennas of the array, which

yields spatial diversity.

An analytical and intuitive description of the channel spatial selectivity

has been given in [72] through the theory of the multipath shape factors. The

multipath shape factor are derived from the Fourier coefficients of the PAS

given by

Fn =

∫ 2π

0

Pφ(φ)ejnφdφ (2.2)

where Pφ(φ) is the PAS given in (2.1) for Laplacian distributed AoAs. There

are three different shape factors defined as [72]

Λ =

√
1− |F1|2

F 2
0

γ =
|F0F2 − F 2

1 |
F 2

0 − |F1|2
φmax =

1

2
arg
[
F0F2 − F 2

1

]
(2.3)

where Λ is the angular spread, γ is the angular constriction (a measure of the

concentration of the multipaths around two azimuth directions) and φmax is

the azimuthal direction of maximum fading (an orientation parameter). By

definition, these three parameters depend on the distribution of the PAS, which
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describes the spatial properties of the propagation channels, and are indicators

of the channel spatial selectivity. Note that, the spatial correlation in MIMO

systems is the effect produced by the channel spatial selectivity and is also

a function of the array parameters as shown later in equation (2.14). The

antenna array may be designed to reduce the spatial correlation by exploiting

different diversity techniques described in the Chapter 3.

2.4 Analytical Channel Models

This section provides analytical models for the clustered channel model

described above. Consider a MIMO communication link with Nt transmit and

Nr receive antennas. Suppose that the system is wideband and operating in

an indoor environment that is accurately modeled using the clustered channel

model. Under this assumption, the channel consists of multiple sample taps

that are associated with different clusters. Because the transmitted signals are

bandlimited, it is sufficient to model only the discrete-time impulse response

(see e.g. [73])

H[t] =
L−1∑
`=0

H`[t] δ[t− `] (2.4)

obtained from sampling the band-limited continuous-time impulse response

where t denotes the discrete-time index, L is the number of effectively nonzero

channel taps, δ[t− `] is the Kronecker delta function1, and H`[t] is the Nr×Nt

1The Kronecker delta is defined as

δ[t− `] =

{
1 if t = `;
0 otherwise.
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channel matrix for the `-th tap. We assume that the taps are uncorrelated

and we focus now on modeling each channel tap. To simplify the notation, we

omit the index n assuming to model the channel at a given time instant.

Each channel tap consists of a fixed or line-of-sight (LOS) component

H` and a scattered or non-LOS (NLOS) component H̃` and can be written

as [33]

H` =

√
K

K + 1
H` +

√
1

K + 1
H̃` (2.5)

where K is the Rician K-factor. Note that, for the most practical channel

models [43, 44] the LOS component is associated only to the first (earliest)

channel tap.

We assume the LOS component of the channel to be rank one and we

generate it as [43, 74]

H` = ar(Ωr) · a†t(Ωt) (2.6)

where at(Ω) and ar(Ω) are the transmit and receive array responses, respec-

tively, while Ωt and Ωr are the angles of departure/arrival corresponding to

the LOS component at the transmitter and receiver sides, respectively. To

model the NLOS component there are essentially two different methods: de-

terministic and stochastic channel models. Hereafter, we briefly describe each

of them.
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2.4.1 Deterministic Models

In deterministic channel models the entries of the MIMO channel ma-

trix are expressed as a function of the channel spatial parameters. The `-th

matrix tap H` is given by [75,76]

H̃` =
1√
N

N∑
i=1

αiar(φ
r
`,i)a

†
t(φ

t
`,i) (2.7)

where N is the number of rays per cluster, αi is the complex Rayleigh channel

coefficient, φt
`,i and φr

`,i are the AOD and AOA, respectively, of the i-th ray

within the `-th cluster, generated according to the Laplacian pdf in (2.1).

Moreover, at and ar are the transmit and receive array responses, respectively,

given by

at(φ
t
`,i) =

[
1, ejΦ1(φt

`,i), · · · , ejΦ(Nt−1)(φ
t
`,i)
]T

(2.8)

ar(φ
r
`,i) =

[
1, ejΦ1(φr

`,i), · · · , ejΦ(Nr−1)(φ
r
`,i)
]T

(2.9)

where Φm is the phase shift of the m-th array element with respect to the

reference antenna. Note that the expression of Φm varies depending on the

array configuration and is a function of the AOA/AOD. Equation (2.7) can be

written in closed-form as [77](p.31)

H̃` = Ar,`HαA
†
t,` (2.10)

where At,` = [at(φ`,1), ..., at(φ`,N)], Ar,` = [ar(φ`,1), ..., ar(φ`,N)] and Hα =

1/
√
Ndiag (α1, ..., αN). We define the channel covariance matrix for the `-th

tap as

RH,` = E
[
vec(H̃`)vec(H̃`)

†
]
. (2.11)
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2.4.2 Stochastic Models

We use the Kronecker model to describe the stochastic evolution of

each matrix tap H̃` as [16]

H̃` = R
1/2
` ZS

1/2
` (2.12)

where Z is a Nr × Nt matrix whose entries are independently distributed

according to the complex Gaussian distribution. Moreover, R` and S` are

the spatial correlation matrices at the transmitter and receiver, respectively,

which express the correlation of the receive/transmit signals across the array

elements. The channel covariance matrix of the stochastic model in (2.12) is

given by the Kronecker product of the transmit and receive correlation matrices

as

RH,` = S` ⊗R`. (2.13)

Note that the Kronecker model in (2.12) assumes separability between

transmit and receive spatial correlation, and has been shown through measure-

ments to underestimate the actual MIMO channel capacity [78–81]. In this

dissertation, however, we employ the model in (2.12) since it simplifies the

performance analysis of our MIMO antenna and algorithm designs in spatially

correlated channels. Moreover, the Kronecker structure has been adopted by

the IEEE 802.11n channel model [43], that we use to evaluate the performance

of our designs in realistic indoor propagation environments. Contrarily to [43],

we do not model the power delay profile (i.e., narrowband assumption) and
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Doppler effects, since we aim to measure the performance gains due to the spa-

tial diversity provided by the proposed antenna and algorithm designs, when

no time/frequency diversity is available in the system. To validate our designs,

we also measure their performance in more realistic channel models described

in Section 2.4.1, as shown in the following chapters.

In clustered channel models, the coefficients of Rt and Rr
2, for a single

channel tap are characterized by a certain angular spread and angle of arrival.

Since the same method is used to calculate each correlation matrix, we will

use the notation R to refer to both the transmit or receive correlation matrix.

Likewise, we will use M , instead of Nr or Nt, to indicate the number of an-

tennas. The (m,n) entry of the matrix R for spaced array configurations is

defined as [47,68]

rm,n =

∫
4π

SΩ(Ω)Em(Ω)E∗
n(Ω)ejΨm,n(Ω)dΩ (2.14)

where SΩ(Ω) is the Laplacian pdf in (2.1) and the term Ψm,n(Ω) = Ψm(Ω) −

Ψn(Ω) accounts for the phase difference between the m-th and n-th array

element due to spacing. Note that, for two dimensional channel models, we

refer to the phase term in (2.14) as Φm,n(φ) = Φm(φ)− Φn(φ).

We observe that the spatial correlation in (2.14) is a function of the

channel characteristics through SΩ(Ω), and antenna array parameters such as

polarization, radiation pattern through Em(Ω) and element spacing through

Ψm,n(Ω). Then, equation (2.14) suggests that the array parameters can be

2We omit the subscript ` because we focus on a single tap.
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tuned as a function of the channel parameter to reduce the spatial correlation,

resulting in improved system performance. This dependence is exploited by the

cross-layer antenna/algorithm design methodology described in the Chapter

3.

In performance analyses of MIMO systems, it is sometime convenient

to express the entries of spatial correlation matrix as a function of a single

correlation parameter. For this reason we define the (non-physical) exponential

correlation model at the transmitter and receiver as

[R]m,n = ρ|m−n|
rx [S]m,n = ρ

|m−n|
tx (2.15)

where ρrx and ρtx are the receive and transmit spatial correlation coefficients

between adjacent antennas. We will use this model to evaluate the performance

of adaptive MIMO algorithms described in the Chapters 5, 6 and 7.
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Chapter 3

Benefit of Pattern versus Space Diversity

MIMO arrays can be designed to reduce the spatial correlation be-

tween different antenna elements, resulting in improved system performance.

There are three main antenna diversity techniques commonly employed in

MIMO array design: space, polarization and pattern diversity. This chapter

demonstrates the benefits of pattern versus space diversity in clustered chan-

nel models, described in Chapter 2. It first reviews different antenna diversity

techniques and the properties of circular patch antenna arrays, yielding pattern

diversity. It then analyzes the spatial correlation and performance tradeoffs of

pattern and space diversity in clustered MIMO channel models. Finally, the

performance of circular patch arrays in realistic propagation environments is

shown through Monte Carlo simulations.

3.1 Introduction

This section first reviews different antenna diversity techniques for

MIMO array designs. Then it provides an overview on the proposed anal-

ysis of pattern diversity. Finally the system model and properties of arrays of

circular patch antennas are described.
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3.1.1 Antenna Diversity Techniques

Different antenna diversity techniques have been proposed thus far

to reduce the spatial correlation across different array elements. The most

common techniques are: space, polarization and pattern diversity, described

in [82–85].

Space diversity is enabled by spacing the antennas far apart, such that

the propagation multipaths impinge different array elements with different

phases, producing uncorrelated signal across different antennas.

Polarization diversity is determined by cross-polarized antennas that

receive multipaths with different polarizations, yielding uncorrelated signals

across different array elements.

Pattern diversity is created when the antennas have orthogonal radia-

tion patterns to produce uncorrelated channels across different array elements.

For arrays of uniformly spaced antennas, the throughput that a MIMO

channel can support depends on element spacing [16–18], number of antennas

[19, 20], array aperture [21, 22], and array geometry [16, 23, 24]. Depending

on the spatial characteristics of the MIMO channel, the distance between the

array elements needs to be multiple of the wavelength to ensure good system

performance, as shown in [16–18, 24]. In typical MIMO systems, size and

cost constraints often prevent the antennas from being placed far apart (i.e.,

24



antenna placement in notebook computers or mobile phones). Therefore, space

diversity techniques may be insufficient for next generation wireless handsets.

Alternative techniques for reducing array size are multimode diver-

sity [86, 87] and polarization/pattern diversity [25–31, 88–91]. Multimode di-

versity exploits the difference in radiation patterns of higher order modes to

produce low correlated channels across the modes. Practical solutions to ex-

ploit multimode diversity are biconical antennas [86] and spiral antennas [87].

While these solutions provide significant diversity gain, they do not aim to re-

duce the array size and therefore are not suitable for miniaturized designs for

handsets or notebook computers. To exploit polarization and pattern diver-

sity, the antennas are designed to radiate with orthogonal radiation patterns

and polarizations as a means to create uncorrelated channels across different

array elements. Polarization diversity has already been explored in [25–28]

and its benefits on system performance have been verified through experimen-

tal channel measurements in [92–95]. The benefits of pattern diversity have

been shown through practical measurements with array designs employing tri-

monopole collocated antennas [31], switched parasitic antennas [29, 30] and

dipoles with 90o hybrid [90]. The results in [29–31, 90], however, do not give

insights on the performance of MIMO arrays employing pattern diversity as a

function of the antenna radiation patterns. In this chapter we will show an-

alytically and through simulations that the performance of these arrays is in

fact sensitive to the shape of the antenna radiation patterns and will provide

design criteria for arrays using pattern diversity.
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3.1.2 Overview on the Pattern Diversity Analysis

We analyze MIMO arrays consisting of collocated circular microstrip

antennas. These MIMO arrays exploit pattern diversity without requiring ex-

cessive real estate for spacing the antennas. Different modes can be excited

inside the microstrip, yielding different capacity/error-rate performance. We

will only consider 2-element arrays, where the antennas have the same polar-

ization, to isolate the effect of pattern from polarization diversity. We assume

the circular patch antennas are collocated to measure the effect of pattern

diversity, when no space diversity is available.

We first study the performance of this circular patch array (CPA) as

a function of the physical antenna parameters. In particular, we show that

increasing the number of lobes in the antenna radiation patterns (obtained

by exciting higher order modes of the CPA) yields higher degree of diversity

and better throughput. This result can be used as general design guideline

for MIMO array solutions with pattern diversity. Then, we compare the per-

formance of the CPA against a conventional 2-element uniform linear array

(ULA) to determine the benefit of pattern over space diversity. We choose

the element spacing of the ULA to be greater than half wavelength to reduce

pattern distortion due to mutual coupling [30] and measure only the effect

of space rather than pattern diversity. We show that the CPA outperforms

the ULA with λ/2 element spacing in any channel scenario. Moreover, the

CPA yields similar performance as the ULA with 2.5λ spacing, while satisfy-

ing more restrictive size constraints. In this chapter we do not compare the
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performance of the CPA against other array solutions for pattern diversity

proposed in [29–31, 90]. In fact, our aim is to propose general design criteria

and study the theoretical benefits of pattern over space diversity, rather than

compare the performance of a practical MIMO array against existing designs.

To enable this theoretical analysis, we derive the exact expression for

the spatial correlation coefficients of the CPA for typical clustered MIMO

channels, assuming Laplacian distributed angles of arrival/departure. These

correlation coefficients are useful tools to study pattern diversity. We employ

these coefficients to derive the eigenvalues of the spatial correlation matrix

as a function of the antennas and channel parameters for both the CPA and

ULA. Then we use these eigenvalues to analytically compute a tradeoff be-

tween pattern and space diversity. We express this tradeoff in terms of mode

number of the CPA and element spacing of the ULA, showing a theoretical

condition for which pattern diversity is more effective than space diversity.

We present the performance results in the context of typical channel mod-

els for indoor environments, defined by the IEEE 802.11n standard channel

model [43] for wireless local area networks (WLANs). Finally, we show how

these performance results vary under the effect of mutual coupling across the

antennas.
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3.1.3 System Model

We model the receive signal of a narrowband MIMO system, with Nt

transmit antennas and Nr receive antennas, as

y =

√
γo

Nt

Hx + n (3.1)

where γo is the average signal-to-noise ratio (SNR), y ∈ CNr×1 is the receive

signal vector, x ∈ CNt×1 is the transmit signal vector normalized such that

E{||x||22} = Nt), n ∈ CNr×1 is the zero-mean additive Gaussian noise with

covariance matrix E{nnH} = INr and H ∈ CNr×Nt is the MIMO channel

matrix.

3.1.4 Circular Patch Array (CPA)

The properties of circular microstrip antennas and annular patch struc-

tures have been studied in [96–99]. In [96] it was shown that, by exciting

different modes of circular patch antennas, it is possible to obtain different

radiation properties. In addition, by varying the size of the antennas as well

as the feed location, different polarizations and radiation patterns can be gen-

erated in far-field. In this chapter we use the orthogonality of the radiation

patterns of circular patch antennas as a means to reduce correlation between

the diversity branches of the MIMO array.

We express the electric field of n-th mode excited inside the circular

patch antenna as a function of its θ and φ far-field components as

E
(n)
θ (φ, θ) = ejnπ/2V

(n)
0

2
k0ρ (Jn+1 − Jn−1) cos [n(φ− φ0)] (3.2)
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E
(n)
φ (φ, θ) = −ejnπ/2V

(n)
0

2
k0ρ (Jn+1 + Jn−1) cos θ sin [n(φ− φ0)] (3.3)

where V
(n)
0 is the input voltage, k0 is the wavenumber, Jn = Jn(k0ρ sin θ) is the

Bessel function of the second kind and order n, ρ is the radius of the microstrip

antenna and φ0 is the reference angle corresponding to the feed point of the

antenna [96]. Different radii are defined for different modes to resonate at a

given frequency, according to the following formula [98]

ρ̄ =
χ′nλ

2π
√
εr

(3.4)

where λ is the wavelength (corresponding to the carrier frequency of the sys-

tem), εr is the dielectric constant of the substrate of the microstrip and χ′n is

the first zero of the derivative of the Bessel function Jn. Since the values of χ′n

increase as a function of n (for n ≥ 1), equation (3.4) suggests that for fixed

λ and εr, the size of the circular patch becomes larger for the higher modes.

Therefore, higher order modes are impractical for designs with restrictive size

constraint. We will account for this constraint in our analysis and determine

the mode number that provides good size/performance tradeoff.

The effective radius (ρ̄) in (3.4) does not account for fringing effects,

and the physical radius (ρo) of the circular patch antenna may be smaller

than (3.4), depending on the height of the microstrip. In the design of the

CPA it is possible to predict the physical radius of the circular patch antenna

from the effective radius by solving the recursive formula in [98, p.755]. For

a circular patch antenna with height h = 1.575 mm, we compute the effective

and physical radius as a function of the dielectric constant (εr) of the substrate
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Figure 3.1: Effective (dashed lines) and physical (solid lines) radius of circular
microstrip antennas with h = 1.575 mm as a function of the dielectric constant
(εr) of the substrate.

as in Fig. 3.1. Note that the values of ρo in Fig. 3.1 do not account for possible

coupling effects that manifest when two microstrip antennas are collocated, as

in our CPA designs. Finding the value of ρo that optimizes the performance

of CPAs is one of the goals of the optimization algorithm proposed in this

dissertation.

To isolate the effect of pattern from space diversity, we assume the

patch antennas are collocated and stacked on top of each other, as described

in [97]. We excite the same mode for both the elements of the MIMO array and

tune the phase φ0 to produce orthogonal radiation patterns across the diversity

branches. For the case of a 2-element MIMO array, we feed one antenna with

φ
(1)
0 = 0 and the other antenna with φ

(2)
0 = π/(2n). As result of this feeding
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technique, we get orthogonal radiation patterns for any mode excited within

the antennas, as depicted in Fig. 4.7. Note that we discard “mode 0” since

it does not yield any pattern diversity due to its isotropic radiation pattern

over the azimuth directions, as shown in [96]. In the following sections we will

study the effects of pattern diversity as a function of the mode number and

will show the performance gains achievable with different modes in different

channel models.

We assume the angles of arrival/departure are distributed only over the

azimuth directions (i.e., θ = π/2). Over these directions, the far-field of the

circular patch antenna is only vertically polarized and the φ component of the

far-field in (3.3) is zero. From equation (3.2) we derive the array response of

the CPA as

acpa(φ) = α(ρ, n) [cos(nφ), sin(nφ)]T (3.5)

where α(ρ, n) = ejnπ/2(V
(n)
0 /2)k0ρ [Jn+1(k0ρ)− Jn−1(k0ρ)] and φ is the az-

imuth angle of arrival/departure. In our analysis we fix the overall power radi-

ated by the array to be a constant for any mode and we assume ||acpa(φ)||22 =

|α(ρ, n)|2 = N = 2 for any azimuth direction (φ). In practice, it is possi-

ble to design the CPA such that the condition of constant “radiated” power

(|α(ρ, n)|2) is equivalent to constant “input” power (|V (n)
0 |2) across different

modes. In particular, we consider the radius in (3.4) for which the circular

patch antenna resonates and compute

α(ρ = ρ̄, n) = (V
(n)
0 /2)(χ′n/

√
εr)
[
Jn+1(χ

′
n/
√
εr)− Jn−1(χ

′
n/
√
εr)
]
. Then, it

can be numerically verified that for the most common values of εr ∈ [2, 6],
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(a) n = 1 (b) n = 2

(c) n = 3 (d) n = 4

Figure 3.2: Radiation patterns of circular patch antennas excited with different
modes. In each subplot, different colors correspond to the radiation patterns of the
2 antennas of the CPA.
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different dielectric constants can be chosen for different values of n, such that

V
(n)
0 is almost constant across different modes. This equivalence between in-

put and radiated power enables a fair performance comparison across different

modes for a fixed input power constraint. Note that the analyses presented in

the next sections do not account for possible difference in return loss across

different modes, which may manifest in practical designs.

3.2 Spatial Correlation in Single-Cluster Channels

In this section, we derive exact and approximate spatial correlation

coefficients for CPAs and ULAs, respectively, assuming the MIMO clustered

channel model described in the previous section.

3.2.1 Spatial Correlation of the CPA

We model the voltage received at the port of the `-th patch as [100]

v` =

∫
4π

e`(Ω) · E`(Ω)dΩ (3.6)

where Ω = (φ, θ) is the solid angle, E`(Ω) = E`,θθ̂ + E`,φφ̂ is the far-field of

the circular patch with θ and φ components given in equations (3.2) and (3.3),

e`(Ω) is the propagating field that impinges the antenna from the angular

direction Ω.

From equation (3.6) we derive the correlation coefficient across the `-th

and m-th antenna of the MIMO array by computing

r`,m = E{v`v
∗
m} =

∫
4π

S(Ω)E`(Ω)E∗
m(Ω)dΩ (3.7)
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where S(Ω) = E{e`(Ω)e∗m(Ω)} is the power angular spectrum (PAS) described

in Section 2.2. Comparing (3.7) with (2.14), we observe that in (3.7) the phase

term is removed since we assume the circular patch antennas are collocated.

We now consider two circular patch antennas, both excited with the n-

th mode. We assume the first antenna to be oriented with feed angle φ
(1)
0 = 0.

The second antenna has feed angle φ
(2)
0 = π/(2n) to produce a radiation

pattern orthogonal to the first one. Under these assumptions, substituting

equations (3.2) and (3.3) into (3.7), and accounting for the assumptions on

the PAS, the autocorrelation coefficient for the first antenna is

r11 =

∣∣∣∣V0

2
k0ρ

∣∣∣∣2 ∫ π

−π

∫ π

0

Pφ(φ) ∗ δ(φ− φc)δ(θ − π/2)

·
[
cos2(nφ) [Jn+1 − Jn−1]

2 + cos2 θ sin2(nφ) [Jn+1 + Jn−1]
2] sinθ dθdφ.

(3.8)

Solving the integral in θ we get

r11 =

∣∣∣∣V0

2
k0ρ

∣∣∣∣2 [Jn+1(k0ρ)− Jn−1(k0ρ)]
2

∫ π

−π

Pφ(φ) cos2 [n(φ− φc)] dφ. (3.9)

Using the definition in (2.1), the integral in (3.9) can be expanded as∫ π

−π

Pφ(φ) cos2 [n(φ− φc)] dφ =
1√
2σφ

[
cos2(nφc)

∫ π

−π

e−|
√

2φ/σφ| cos2(nφ)dφ

+ sin2(nφc)

∫ π

−π

e−|
√

2φ/σφ| sin2(nφ)dφ

]
.

(3.10)

To evaluate the integrals in (3.10) we use the properties in [101](eq. 1.5.49.12

on p. 234). Then, we derive the closed-form expression of the auto-correlation
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coefficient as a function of the channel parameters φc and σφ as

r11(φc, σφ) =
|α(ρ, n)|2(

1− e−
√

2π/σφ

) (nσφ)
2

1 + 2(nσφ)2

×
[
1− e−

√
2π/σφ +

cos2(nφc)

(nσφ)2

(
1− e−

√
2π/σφ cos(nπ)

)] (3.11)

where α(ρ, n) is defined as in equation (3.5). This correlation coefficient is de-

rived for the single-cluster channel, but its expression can be easily extended

to multiple clusters by adding up the correlation coefficients due to each of

the clusters, thanks to the independence of clusters. The auto-correlation

coefficient for the second patch antenna is derived from equation (3.11). Ac-

counting for the angle shift (φ
(2)
0 = π/(2n)) across the two antennas (i.e.,

r22(φc, σφ) = r11(φc − φ
(2)
0 , σφ)), we find

r22(φc, σφ) =
|α(ρ, n)|2(

1− e−
√

2π/σφ

) (nσφ)
2

1 + 2(nσφ)2

×
[
1− e−

√
2π/σφ +

sin2(nφc)

(nσφ)2

(
1− e−

√
2π/σφ cos(nπ)

)]
.

(3.12)

To derive the cross-correlation coefficients we follow similar steps as

before, resulting in

r12 =

∣∣V0

2
k0ρ
∣∣2

2
[Jn+1(k0ρ)− Jn−1(k0ρ)]

2

∫ π

−π

Pφ(φ) sin [2n(φ− φc)] dφ. (3.13)

Using the definition of PAS in Section 2.2, we expand the integral in (3.13) as∫ π

−π

Pφ(φ) sin [2n(φ− φc)] dφ = − 1
√

2σφ

(
1− e−

√
2π/σφ

) sin(2nφc)

×
∫ π

−π

e−|
√

2φ/σφ| cos(2nφ)dφ.

(3.14)
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We evaluate the integral in (3.14) by using the property in [101](eq. 1.5.49.11

on p. 234). Substituting (3.14) in (3.13) we find

r12(φc, σφ) =
|α(ρ, n)|2

2

sin(2nφc)

1 + 2(nσφ)2
(3.15)

where α(ρ, n) is defined as before. Note that the cross-correlation coefficient

r21 has the same expression as equation (3.15).

In Fig. 3.3 we show the correlation coefficients of the CPA when modes

1, 3, and 5 are excited inside the microstrip antennas. It is possible to see

that, as the mode number (n) increases, the frequency of the oscillations of

the auto-correlation (r11 and r22, around the value 1) and the cross-correlation

(r12, around 0) increases. This is due to the higher number of lobes in the

radiation patterns for the higher order modes, as shown in Fig. 4.7. The

amplitude of these oscillations decreases for increasing n, which makes the

spatial correlation matrix closer to identity. We will find in the next section

that this behavior results in increased capacity for the higher order modes.

3.2.2 Spatial Correlation of the ULA

We express the phase term in (2.14) of the m-th array element with

respect to the reference antenna as a function of the AOA as

Φm(φ) = kdm sin(φc − φ) (3.16)

where m = 0, ...,M − 1, φ is the AOA offset with respect to the mean AOA

of the cluster φc (measured from the broadside direction of the ULA), d is
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the antenna element spacing and k is the wavenumber. Substituting (3.16) in

(2.14), we express the cross-correlation coefficient of the ULA as

rm,n =

∫ π

−π

ejkd(m−n) sin(φc−φ) Pφ(φ) dφ (3.17)

where Pφ(φ) is the pdf given in (2.1).

Let us express the exponent of the function inside the integral as

sin(φc − φ) = sinφc cosφ− cosφc sinφ. (3.18)

Expanding with a first-order Taylor series (assuming φ ≈ 0)

sin(φc − φ) ≈ sinφc − φ cosφc. (3.19)

Substituting (3.19) into (3.17) we get

rm,n ≈ ejkd(m−n) sin φc ·
∫ π

−π

e−jkd(m−n) cos(φc)φ Pφ(φ) dφ. (3.20)

Figure 3.3: Correlation coefficients for the CPA, with modes 1, 3, 5, and
σφ = 20o.
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From (2.1) we observe that the truncated Laplacian PAS is zero outside

the range [−π, π). Therefore, the integration of Pφ(φ) truncated over [−π, π) is

approximately equivalent to integration over the real line. Then, substituting

(2.1) into (3.20) we get

rm,n(φc, σφ) ≈ ejkd(m−n) sin φc ·
∫ ∞

−∞
e−jkd(m−n) cos(φc)φ

β√
2σφ

e−|
√

2φ/σφ| dφ. (3.21)

Equation (3.21) consists of the product of a complex exponential term

times an integral term. The integral term is the characteristic function of the

Laplacian pdf in (2.1), and it can be expressed as

bm,n(φc, σφ) =

∫ ∞

−∞
e−jkd(m−n) cos(φc)φ

β√
2σφ

e−|
√

2φ/σφ| dφ = Fω

{
β√
2σφ

e−|
√

2φ/σφ|
}

(3.22)

where Fω denotes the Fourier transform evaluated at ω = kd(m − n) cosφc.

Solving (3.22), we get

rm,n(φc, σφ) =
β

1 +
σ2

φ

2
· [kd(m− n) cosφc]

2
(3.23)

with m,n = 0, ..., (M − 1). Therefore, substituting (3.23) in (3.21) we derive

the following closed-form for the correlation coefficients across all the array

elements

rm,n(φc, σφ) ≈
β ejkd(m−n) sin φc

1 +
σ2

φ

2
· [kd(m− n) cosφc]

2
. (3.24)

The complex exponential term in (3.21) can be written as

ejkd(m−n) sin φc = ejkdm sin φc · e−jkdn sin φc (3.25)
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where the multiplicative factors at the right hand side of (3.25) are the entries

of the steering vector of the ULA, given by

aula(φc) =
[
1, ejkd sin φc , · · · , ejkd(M−1) sin φc

]T
. (3.26)

Using the definition in (3.26), we derive the spatial correlation matrix, with

complex entries given by (3.24), as

R(φc, σφ) ≈
[
aula(φc) · a†ula(φc)

]
�Bula(φc, σφ) (3.27)

where � denotes the Shur-Hadamard (or elementwise) product, a(φc) is the

array response (column vector) for the mean azimuth AOA (φc) and Bula is

the matrix with entries bm,n. A similar result was given in [102, 103], where

the Gaussian distribution was used for the PAS. In our case, however, we

computed the matrix R(φc, σφ) for the case of Laplacian pdf, given by (2.1).

3.3 Analysis of Pattern and Space Diversity

In this section we analytically derive some tradeoffs between pattern

and space diversity, employing the CPA and ULA described above. First we

show that capacity and error rate performance are a function of the eigenvalues

of the spatial correlation matrix. Then we use the correlation coefficients

derived in (3.11), (3.12) and (3.15) to compute the eigenvalues of R in closed-

form as a function of array and channel parameters for the CPA and the ULA.

Comparing the eigenvalues for the CPA and the ULA, we provide a formula

to predict when pattern diversity is more effective than space diversity, as a
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function of the array and channel parameters. We will show that the gain due

to pattern diversity is a function of the mode number (n) of the microstrip

antennas, whereas the gain of space diversity depends on the element spacing

(d) of the ULA.

3.3.1 Capacity and Error Rate Performance

We consider the tight upper bound to the ergodic capacity for spatial

multiplexing (SM) systems (with equal power allocation across the transmit

antennas) reported in [104]. We assume zero-mean single-sided (only at the

transmitter) correlated MIMO channels. This upper bound is expressed as

C ≤ log2

[
Nmin∑
k=0

(
γo

Nt

)k
Nr!

(Nr − k)!

∑
νk

|Rνk
νk
|

]
(3.28)

where Nmin = min(Nr, Nt), νk is an ordered subset of {1, ..., Nmin} with mea-

sure |νk| = k and Rνk
νk

denotes the k × k sub-matrix lying in the νk rows and

νk columns of the transmit spatial correlation matrix R.

For the case of Nt = Nr = N = 2, we get |Rν0
ν0
| = 1, |Rν1

ν1
| = N = 2

and |Rν2
ν2
| = |R| = λ1λ2. Then, we may express the upper bound in (3.28) as

C ≤ log2

[
1 + 2 γo +

γ2
o

2
λ1λ2

]
(3.29)

where λ1 and λ2 are the eigenvalues of the spatial correlation matrix R. Equa-

tion (3.29) shows that the capacity increases as a function of the product of

the eigenvalues (λ1λ2).

We derive the error rate performance as a function of the eigenvalues

of R as well. The error rate performance depends on the type of space-time
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codes (e.g., spatial multiplexing or space-time block codes or space-time trellis

codes). As we consider N = 2, we focus on error rate estimate for the Alamouti

scheme [35], recognizing that the Alamouti scheme is not capacity achieving as

(3.28) [34, p.115]. In the high SNR regime, the average probability of symbol

error is upper-bounded by [33, p.102]

Pe ≤ Ne

(
γo d

2
min

8

)−r r∏
i=1

1

λi

(3.30)

where r and λi are the rank and eigenvalues of R, respectively, while Ne and

dmin are the number of nearest neighbors and minimum distance of the symbol

constellation, respectively. For the case of Nt = Nr = N = 2 and full rank R,

we simplify the expression in (3.30) as

Pe ≤ Ne

(
8

γo d2
min

)2
1

λ1λ2

. (3.31)

The error rate performance improves as the product λ1λ2 increases.

In equations (3.29) and (3.31) we found that the capacity and error

rate performance of a 2 × 2 MIMO system is a function of the product λ1λ2.

We will use this product as a measure of system performance. In the next

subsections we will derive the eigenvalues of R in closed-form as a function of

the channel and antenna parameters for the CPA and ULA. Then, we will use

these expressions to derive some tradeoffs between pattern and space diversity.
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3.3.2 Eigenvalues of the Spatial Correlation Matrix for the CPA

The eigenvalues (λ1,2) of the 2 × 2 spatial correlation matrix (R) can

be expressed as

λ1,2 =
1

2

[
(r11 + r22)±

√
4r12r21 + (r11 − r22)

2

]
. (3.32)

Substituting equations (3.11), (3.12), and (3.15) into (4.5) and simpli-

fying, we derive the eigenvalues of the correlation matrix for the CPA as

λcpa
1,2 =

|α(ρ, n)|2

2
1

1 + 2(nσφ)2
·

{[
2(nσφ)2 +

1− e−
√

2π/σφ cos(nπ)

1− e−
√

2π/σφ

]

±

√√√√sin2(2nφc) +

(
1− e−

√
2π/σφ cos(nπ)

1− e−
√

2π/σφ

)2

cos2(2nφc)

 .

(3.33)

We note that for n integer, the term cos(nπ) assumes values +1 or −1 de-

pending on whether n is even or odd. When n is even the expression (3.33)

simplifies to

λcpa
1,2 =

|α(ρ, n)|2

2

[
1± 1

1 + 2(nσφ)2

]
. (3.34)

Recall that |α(ρ, n)|2 = N = 2 (i.e., trace(R) = N) as specified for equation

(3.5). Then, we get the following closed-form expression of the eigenvalues of

R as a function of the channel and antenna parameters

λcpa
1,2 = 1± 1

1 + 2(nσφ)2
. (3.35)

Note that these eigenvalues depend only on the cluster angular spread, but

not on the mean angle of arrival of the cluster, due to the symmetry of the

orthogonal radiation patterns of the two elements of the CPA.
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When n is odd, equation (3.33) becomes

λcpa
1,2 =

1
1 + 2(nσφ)2

·

{[
2(nσφ)2 +

1 + e−
√

2π/σφ

1− e−
√

2π/σφ

]

±

√√√√sin2(2nφc) +

(
1 + e−

√
2π/σφ

1− e−
√

2π/σφ

)2

cos2(2nφc)


(3.36)

where we applied the usual power normalization |α(ρ, n)|2 = N = 2. In

this case the eigenvalues of R are a function of the cluster mean angle of

arrival/departure (φc). However, the ratio within the square-root is close to

1, especially for high values of σφ, which makes the term under the square-

root almost constant (i.e., independent on φc) and equal to 1. Therefore, the

oscillations of the eigenvalues as a function of φc are small around their mean

value as shown in Fig. 3.4, where we plotted also the envelope correlation

coefficients as reference. For high angle spread (σφ) and n odd, we can write

λcpa
1,2 ≈ 1± 1

1 + 2(nσφ)2
. (3.37)

Computing the limit of (3.35) and (3.36) for n→∞ we find that

lim
n→∞

λcpa
1,2 = 1. (3.38)

As the mode number increases, the eigenvalues become closer to 1 and the

product λ1λ2 is maximized. This maximization is due to the higher decorre-

lation between the diversity branches of the CPA for the higher order modes,

which results in improved channel capacity and error rate performance, accord-

ing to (3.29) and (3.31). This result can be physically explained as follows:
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for high n the radiation pattern of the circular patch antenna is characterized

by a large number of lobes, which yields high pattern diversity.

3.3.3 Eigenvalues of the Spatial Correlation Matrix for the ULA

We use the approximate expression of the correlation coefficients for

ULAs with Laplacian distributed power azimuth spectrum, derived in [105]

r`,m ≈ ejk0d(m−`) sin φc

1 +
σ2

φ

2
· [k0d(m− `) cosφc]

2
(3.39)

where d is the element spacing of the ULA. Using equation (4.5) and simpli-

fying, we find that

λula
1,2 = 1± 1

1 +
σ2

φ

2
(k0d cosφc)

2
. (3.40)

Figure 3.4: Eigenvalues of the correlation matrix for CPA with mode 3 and
σφ = 20o
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We then compute the limit of (3.40) for d→∞ as

lim
d→∞

λula
1,2 = 1. (3.41)

Equation (3.41) reveals a well known result: increasing the element spacing

produces high space diversity, which yields increased channel capacity [16,24]

and reduced error rate.

3.3.4 Pattern and Space Diversity Tradeoff

In equations (3.29) and (3.31), we showed that the capacity and error

rate performance of a 2 × 2 MIMO system depends on the product of the

eigenvalues of R (i.e., λ1λ2). Here we compare the eigenvalues for the CPA and

ULA obtained in the previous subsections to derive a condition for which one

array performs better than the other. This condition will define the tradeoff

between pattern diversity (for the CPA) and space diversity (for the ULA).

We assume the product of the eigenvalues for the CPA in (3.35) to be larger

that the ULA in (3.40), which is the condition for which the CPA outperforms

the ULA, according to (3.29) and (3.31). Then, we write

λcpa
1 λcpa

2 = 1−
[

1

1 + 2(nσφ)2

]2

> 1−

 1

1 +
σ2

φ

2
(k0d cosφc)

2

2

= λula
1 λula

2 .

(3.42)

Solving this inequality we derive

n > d̄π cosφc (3.43)
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where d̄ = d/λ is the element spacing normalized with respect to the wave-

length. Interestingly, the expression (3.43) does not depend on σφ, which

suggest that the pattern/space diversity tradeoff is independent on the an-

gular spread of the channel. Moreover, at endfire directions (i.e., φc = π/2)

the CPA always outperforms the ULA, since the inequality n > 0 is always

satisfied. At broadside directions (i.e., φc = 0) we get

n > d̄π (3.44)

which can be used as rule of thumb to choose an optimal mode number in

the design of the CPA. As example, to design a CPA that outperforms a

ULA of dipoles half wavelength spaced apart, we would need at least n = 2.

This expression also reveals under which conditions pattern diversity is more

effective than space diversity.

To get an insight on the diversity gain achievable with the CPA over

the ULA, we compute the SNR gain as a function of the eigenvalues of R. We

assume the same predefined target symbol error probability (Pe) and constel-

lation type (characterized by Ne and dmin) for transmissions with either the

CPA or ULA. Then, from (3.31) we express the SNR gain as

G =
γo,ula

γo,cpa

=

√
λcpa

1 λcpa
2

λula
1 λula

2

(3.45)

where the expression of the product of eigenvalues is given by (3.42). We

now consider a practical example where the CPA is excited with mode 4 and

the ULA has element spacing d = λ/2. We assume σφ = 20o and φc ∈
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[0, 60o], which is the range of values for which the approximation in (3.39)

holds with negligible error, as specified in [105]. Under these assumptions,

pattern diversity (with the CPA) yields SNR gains over space diversity (with

the ULA) in the range 1-3 dB. We will validate this theoretical result through

simulations in the next section.

3.4 Performance Results in Clustered MIMO Channel
Models

In this section we present some numerical performance results that

compare the CPA and ULA in terms of MIMO channel capacity and symbol

error rate (SER). We first show how these arrays perform in single and double

cluster channels. Then, we present capacity and error rate performance in

typical channel models for indoor environments, consistent with the IEEE

802.11n standard channel model [43]. Finally, we measure the performance

degradation of the two arrays due to mutual coupling.

3.4.1 Single-Cluster Channels

Here we simulate the MIMO channel with a single cluster, generated

with variable mean angle of arrival/departure (φc) and fixed angular spread

σφ. In Fig. 4.4 we compare the envelope correlation coefficients of the CPA

(with mode 3) against the ULA (with element spacing of λ/2), for single cluster

with σφ = 15o. We generate the correlation coefficients of the ULA through the

exact expression derived in [47] for Laplacian distributed angles of arrival. The
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auto-correlation coefficients of the ULA are always one by definition, whereas

the cross-correlation varies as a function of φc. In particular, at the broadside

direction (i.e., φc = 0o), r12 reaches its lowest value, which results in the

spatial correlation matrix to be closer to identity. On the other hand, at the

endfire direction (i.e., φc = 90o), r12 becomes very close to the auto-correlation

coefficients, producing a correlation matrix close to rank one. In the same plot

it is depicted the MIMO channel capacity at γo = 5 dB for the two arrays.

We compute the ergodic capacity employing the tight upper bound for zero

mean single-sided spatially correlated MIMO channels reported in (3.29). The

capacity of the CPA has small oscillations around its mean value (which are

not visible in Fig. 4.4), due to the slow oscillations of the eigenvalues of R as

reported in equation (3.36). The capacity of the ULA reaches its maximum and

Figure 3.5: Envelope correlation and ergodic capacity for the ULA with ele-
ment spacing of λ/2 and CPA with mode 3. The channel is simulated with
σφ = 15o and γo = 5dB.
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minimum values at broadside and endfire directions, respectively, as already

acknowledged in [24]. Interestingly, the CPA outperforms the ULA for any

direction of arrival.

In Fig. 3.6 we report the ergodic capacity (i.e., upper bound) at γo = 5

dB for the ULA and the CPA with different modes, in single-cluster channel

with σφ = 30o. For “mode 1” the CPA outperforms the ULA only for angles

close to endfire directions. In fact, the radiation pattern of “mode 1” con-

sists of only two lobes over the azimuth directions (as depicted in Fig. 3.2(a)),

which makes pattern diversity less effective than space diversity. For the higher

modes, the CPA always provides better performance than the ULA, in agree-

ment with the analytical results presented in (3.44). Moreover, the maximum

capacity of the CPA is close to its saturation point when “mode 3” is employed.

Note that the higher the mode number the larger the size of the microstrip

antenna for fixed dielectric constant of the substrate and carrier frequency, as

shown in (3.4). Therefore, “mode 3” is a good tradeoff in terms of antenna

size and MIMO performance.

3.4.2 Double-Cluster Channels

We now generate two clusters with variable mean angle of arrival and

measure the MIMO capacity for the CPA (with “mode 3”) and ULA. The

MIMO mean capacity is derived according to the upper bound in (3.29) for

zero-mean single-sided correlated MIMO channels.

In Fig. 3.7(a) we report the mean capacity as a function of the two
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mean angles of arrival of the clusters (φ1 and φ2). The ULA is simulated

with element spacing d = λ/2. It is possible to see that the CPA outperforms

the ULA for any channel scenario (i.e., combination of φ1 and φ2). Then, we

compare the performance of the CPA against the ULA with spacing d = 2.5λ

in Fig. 3.7(b). We notice that only at broadside directions (i.e., φ1,φ2 ≈ 0)

the ULA outperforms the CPA. In this case, to improve the performance of

the CPA we would need to increase the mode number, as suggested by the

inequality (3.44).

3.4.3 IEEE 802.11n Channel Models

Here we compare the performance of the CPA and ULA in typical clus-

tered channels for indoor environments, described in the IEEE 802.11n stan-

Figure 3.6: Ergodic capacity for the ULA with element spacing of λ/2 and
CPA with different mode numbers. The channel is simulated with σφ = 30o

and γo = 5dB.
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(a) ULA with d = λ/2 (b) ULA with d = 2.5λ

Figure 3.7: Ergodic capacity for double-cluster channels as a function of the
mean azimuth AoAs (φ1 and φ2) of the clusters, with σφ = 30o and γo = 5dB.
The CPA is excited with mode 3.

dard channel model [43]. We assume Ricean double-sided correlated channel

as in (2.5) and compute the LOS component in equation (2.6) by using the

array response for the CPA and ULA given by (3.5) and (3.26), respectively.

We study the performance of these arrays in terms of MIMO channel capacity

and symbol error rate (SER), through Monte Carlo simulations. To derive

the SER curves we simulate a 2× 2 narrowband MIMO system, according to

equation (3.1). We employ QPSK modulation, Alamouti scheme at the trans-

mitter [35] and maximum ratio combining (MRC) receiver. We compare the

performance of three different arrays: CPA with mode 3, ULA1 with element

spacing d = λ/2 and ULA2 with element spacing d = 2.5λ.

In Fig. 3.8 we show the mean channel capacity and SER simulated in
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(a) Ergodic capacity (b) Symbol error rate

Figure 3.8: Ergodic capacity and error rate performance for the CPA with
mode 3, ULA1 with d = λ/2 and ULA2 with d = 2.5λ, in the IEEE 802.11n
standard channel models B and E (NLOS).

the NLOS channel models B and E, described in [43]. It is possible to see that

in high SNR regime the CPA yields about 3 dB and 1 dB gain over the ULA1,

in channel models B and E, respectively. Note that these gains match the ones

theoretically derived in Section 3.3.4, for single-cluster channels. Moreover, the

CPA performs similarly to the ULA2, providing more or less gain depending

on the channel model.

In Fig. 3.9 we show similar results as in Fig. 3.8, for the case of LOS

channel models D and E. Based on the SER results, the CPA provides SNR

gains of ∼ 2 dB (in high SNR regime) over the ULA1 in channel models D and

E. Then, in the LOS case the SNR gains of the CPA over the ULA1 is reduced

compared to the NLOS case. Also, the CPA performs similarly to the ULA2,
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(a) Ergodic capacity (b) Symbol error rate

Figure 3.9: Ergodic capacity and error rate performance for the CPA with
mode 3, ULA1 with d = λ/2 and ULA2 with d = 2.5λ, in the IEEE 802.11n
standard channel models D and E (LOS).

as for the NLOS case. Note that these results do not account for mutual

coupling effects, which may affect the performance of the arrays especially for

small element spacing (i.e., d = λ/2). In the next subsection we show how the

performance of these arrays vary due to mutual coupling.

3.4.4 Performance Results with Mutual Coupling Effects

Fig. 3.10 depicts the average MIMO channel capacity (with correlation

only at the receive side), accounting for mutual coupling, as a function of

the SNR. We measured the effects of mutual coupling for the ULA and CPA

through FEKO, an EM software tool based on the method of moments. Then,

we used the model for mutually-coupled antennas described in [106, 107] to
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estimate the MIMO capacity through Monte Carlo simulations. We designed

the antennas to operate at the carrier frequency of 2.45 GHz, which is the

operating frequency of WLANs. For the CPA we excited the mode 3 with

εr = 2.5, physical radius ρ̃ = 0.41λ, feed point ρ0 = 0.8ρ, height of the patch

h = 1.575 mm.

Figure 3.10: Ergodic capacity with mutual coupling effects in different channel
scenarios, for the CPA with mode 3 and ρ̃ = 0.41λ, ULA1 with d = λ/2 and
ULA2 with d = 2.5λ.

The first set of curves is referred to the ULA with element spacing λ/2

(i.e., ULA1) and low angle spread (i.e., σφ = 15o). In this channel condition,

the CPA yields 0.8 dB and 1.8 dB gains at γo = 10 dB over the ULA at

broadside and endfire directions, respectively. Therefore, in this conditions,

pattern diversity yields higher performance than space diversity, as expected.

The second set of curves is obtained for the ULA with element spacing 2.5λ

(i.e., ULA2), high angle spread (i.e., σφ = 40o) and cluster located at broadside
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direction of the ULA2. The MIMO capacity of the CPA is very close to the

ULA2, while satisfying more limited size constraints. These results clearly

show the benefit of pattern diversity versus space diversity with 2-element

ULA and CPA, in single-cluster MIMO channels.
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Chapter 4

Design of MIMO Arrays in Clustered

Channels

Antenna design for MIMO communication systems requires higher de-

gree of effort compared to conventional single antenna systems. The per-

formance of MIMO arrays is evaluated through metrics that account for the

higher complexity of the multivariate channel statistics. This chapter reviews

recent advances in the design of MIMO arrays, defining techniques and metrics

commonly used for these designs. The objective of this chapter is to propose

a new array design methodology that jointly optimizes multiple performance

metrics. The proposed design methodology employs antenna theory and com-

munication theoretic performance metrics, and is arguably a cross-layer design

problem.

4.1 Introduction

Motivated by the results in Chapter 3, we now define a novel optimiza-

tion algorithm for CPA designs, accounting for both far-field (i.e., scattering

in the propagation environment) and near-field (i.e., mutual coupling) effects.

Complete models to analyze the performance of compact MIMO arrays were
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proposed in [106, 107]. In [106, 107] the transfer function of MIMO systems

(relating the input signals to the output of the receiver) was defined to model

the propagation channel as well as the coupled transmit and receive antennas.

While these models can be used to evaluate exhaustively the performance of

given MIMO array designs, they may not be suitable to optimize the array

parameters in different propagation conditions, due to high computational

complexity. In this chapter we propose a practical optimization algorithm

to design MIMO arrays, by treating the far- and near-field effects separately.

We define the objective function of the optimization method based on MIMO

communication performance metrics (to account for the propagation channel)

and microwave theory performance metrics (determining the antenna efficiency

and the effect of mutual coupling).

In Chapter 3 we studied the theoretical capacity and error rate for CPA

designs in clustered MIMO channel models, showing that performance gains

due to pattern diversity are essentially determined by the shape of the antenna

radiation patterns. While in Chapter 3 we employed ideal radiation patterns

derived from theoretical analysis, here we evaluate numerically these patterns

through electromagnetic (EM) software tools, to account for the near-field

effects. We first present channel and antenna parameters used as inputs to

the optimization algorithm for CPA designs. We also derive a lower bound

on the ergodic capacity in clustered MIMO channels, demonstrating that the

CPA performance can be measured over a reduced set of channel parameters

with minimal error. This result yields significant computational complexity
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reduction for the proposed optimization algorithm. Then we present a new

definition of spatial correlation coefficient suitable for studies on pattern di-

versity in realistic clustered channel models. From the correlation coefficients

we derive numerically the MIMO ergodic capacity in correlated channels and

define two communication theoretic metrics, that measure average and outage

performance of CPAs in different propagation conditions. We evaluate these

metrics as a function of the antenna parameters.

Additionally, we evaluate the near-field effects of CPAs by defining the

antenna bandwidth from the scattering parameters [108]. Theoretical analy-

sis on the impedance bandwidth of circular microstrip antennas as a function

of the physical antenna parameters were presented in [96, 109]. Here, we ex-

ploit the results in [96,109] to evaluate bandwidth and mutual coupling effects

as a function of the antenna parameters (i.e., radius of the circular patch,

feed position). Finally, we propose an optimization algorithm that maximizes

the objective function derived from communication theoretic and microwave

theory performance metrics to produce optimal CPA designs. To make our

discussion concrete, we consider practical system parameters (i.e., frequency

band) and clustered channel models as in the IEEE 802.11n standard for wire-

less local area networks (WLANs). The proposed optimization methodology

is conceived for CPA designs, but can be extended to any MIMO array design

exploiting pattern diversity.
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4.2 Optimization Parameters and Problem Formulation

In this section we describe the channel and antenna parameters used by

the proposed optimization algorithm for CPAs. Then we present the problem

formulation and algorithm block-diagram.

4.2.1 Channel and Antenna Parameters

There are essentially three channel parameters that characterize clus-

tered MIMO channel models:

• Number of clusters (Nc);

• Mean AOA of the clusters: Φ = [φ
(1)
c , . . . , φ

(Nc)
c ], with φ

(i)
c ∈ Aφ;

• Angle spread of the clusters: Σ = [σ
(1)
φ , . . . , σ

(Nc)
φ ], with σ

(i)
φ ∈ Aσ

where Aφ and Aσ denote the set of values of φ
(i)
c and σ

(i)
φ , respectively. For

example, the IEEE 802.11n channel model [43] assumes Aφ = {0o, . . . , 360o}

and Aσ = {15o, . . . , 50o}.

Our CPA design consists of two circular microstrip antennas stacked

one on top of the other as in Fig. 4.1. Each microstrip antenna consists of

circular ground plane, substrate and patch, and is excited via coaxial feed.

The two microstrip antennas are designed with different radia and dielectric

constant of the substrate to excite the same mode number 3. The theoretical

relationship between radius and dielectric constant for different mode numbers

was shown in Fig. 3.1.
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Figure 4.1: Geometry of the 2-CPA design.

The antenna parameters describing the physical characteristics of the

two elements of the CPA are:

• Physical radius (ρo) of the circular microstrip antennas;

• Feed radial position (ρf): defined as the distance between the center

of the circular patch antenna and the feeding point (assuming coaxial

feed);

• Height (h) of the antenna substrate;

• Dielectric constant (εr) of the antenna substrate
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where ρf is defined in the range [0, ρo] and typically εr ∈ [2.2, 12].

4.2.2 Problem Statement

The goal of the algorithm proposed in this chapter is to numerically

compute the values of antenna parameters that optimize the CPA performance

(according to metrics defined later in this chapter) in a variety of propagation

scenarios, characterized by different combinations of channel parameters.

The optimization parameters are defined by the following vector de-

scribing the physical characteristics of each antenna element of the CPA

xm =
[
ρ(m)

o , ρ
(m)
f , h(m), ε(m)

r

]
(4.1)

where m ∈ {1, 2} for 2-element arrays1 and x = [x1,x2] contains the physical

parameters of the 2-CPA. The vector x takes its values from the set X ⊂ R8

that defines the physical constraints of the array design and the feasible set for

the optimization algorithm. Note that x may also contain additional entries,

such as the radius of the circular ground plane (ρgp) and the coaxial feed pin

(rc).

Fig. 4.2 depicts the block diagram of the proposed optimization algo-

rithm for MIMO array designs. For given input x, the antenna patterns are

computed numerically through EM software tools and used in combination

with the channel parameters to predict the performance of MIMO arrays in

1For the rest of this chapter, we denote the bottom patch in Fig. 4.1 with “1” and the
top patch with “2”.
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correlated channels. Different communication theoretic metrics can be used

to evaluate the performance of the array (i.e., capacity or error rate). In this

chapter we use the MIMO ergodic capacity. From the EM tools we also derive

the scattering parameters (i.e., S-parameters) to measure the antenna band-

width and mutual coupling effects. These performance metrics are fed to the

optimization algorithm that computes the optimal set of antenna parameters

xopt.

Figure 4.2: Block diagram of the proposed optimization algorithm for MIMO
array designs exploiting pattern diversity.
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4.3 CPA Analysis in Clustered MIMO Channels

Here we compute in closed-form the spatial correlation coefficients of

CPAs in multi-cluster channel models. From these coefficients, we analytically

derive a lower bound on the MIMO ergodic capacity and demonstrate that the

CPA performance can be evaluated over a reduced set of channel parameters

with minimal error. This result is used to simplify the proposed optimization

algorithm, yielding significant reduction in computational complexity.

4.3.1 Spatial Correlation of CPAs in Multi-Cluster Channels

For a narrowband system with Nc clusters, the spatial correlation be-

tween the `-th and m-th antennas of the MIMO array can be expressed as

r`,m =
1

Nc

Nc∑
i=1

r
(i)
`,m (4.2)

where r
(i)
`,m is the correlation coefficient corresponding to the i-th cluster, and

the normalization factor before the summation is to satisfy the trace constraint

of the spatial correlation matrix (i.e., Tr(R) = N).

In Section 3.2 we derived closed-form expressions of the correlation

coefficients in single-cluster channels (i.e., Nc = 1). Now we compute analyti-

cally these correlation coefficients accounting for multiple clusters. To simplify

this analysis we assume that the Nc clusters experience the same angle spread

(i.e., σ
(i)
φ = σφ, ∀i = 1, . . . , Nc). Under this assumption, substituting (3.11)
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and (3.15) into (4.2), we write the auto- and cross-correlation coefficients as

r1,1(Nc,Φ, σφ) =
|α(ρ, n)|2(

1− e−
√

2π/σφ

) (nσφ)
2

1 + 2(nσφ)2

×

[
1− e−

√
2π/σφ +

1− e−
√

2π/σφ cos(nπ)

Nc(nσφ)2

Nc∑
i=1

cos2(nφ(i)
c )

]
(4.3)

and

r1,2(Nc,Φ, σφ) =
|α(ρ, n)|2

2Nc [1 + 2(nσφ)2]

Nc∑
i=1

sin(2nφ(i)
c ). (4.4)

Note that the auto-correlation coefficient for the second patch is derived from

equation (4.3), accounting for the angle shift (φ
(2)
0 ) across the two antennas,

and r2,2(φc, σφ) = r1,1(φc−φ(2)
0 , σφ). Moreover, the cross-correlation coefficient

r2,1 has the same expression as (4.4).

4.3.2 Eigenvalue Analysis

The eigenvalues λ(1,2) of the 2 × 2 spatial correlation matrix (R) are

computed as

λ(1,2) = λ(1,2)(Nc,Φ, σφ)

=
1
2

[
(r1,1 + r2,2)±

√
4r1,2r2,1 + (r1,1 − r2,2)

2

]
(4.5)

where λ1 and λ2 are the maximum and minimum eigenvalues of spatial corre-

lation matrix R, respectively. The eigenvalues in (4.5) depend on the channel

parameters (i.e., Nc, Φ and σφ) through the spatial correlation coefficients in

(4.3) and (4.4). Hereafter, we derive bounds to these eigenvalues for the CPA,

assuming the mode number n is even. Similar results can be easily derived for

n odd, by using similar approximation as in [110].
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We expand the two terms in (4.5) within the brackets by substituting

the correlation coefficients in (4.3) and (4.4), and obtain

r1,1 + r2,2 = |α(ρ,n)|2(
1−e

−
√

2π/σφ
) (nσφ)2

1+2(nσφ)2

×
[
2
(
1− e−

√
2π/σφ

)
+ 1−e

−
√

2π/σφ cos(nπ)
Nc(nσφ)2

∑Nc

i=1

[
cos2(nφ

(i)
c ) + sin2(nφ

(i)
c )
]]

= |α(ρ,n)|2(
1−e

−
√

2π/σφ
) (nσφ)2

1+2(nσφ)2

[
2
(
1− e−

√
2π/σφ

)
+ 1−e

−
√

2π/σφ cos(nπ)
(nσφ)2

]
(n even)

= |α(ρ, n)|2
(4.6)

and

4r1,2r2,1 + (r1,1 − r2,2)
2 (n even)

=

[
|α(ρ, n)|2

1 + 2(nσφ)2

]2

×
{[

1
Nc

∑Nc

i=1 cos(2nφ
(i)
c )
]2

+
[

1
Nc

∑Nc

i=1 sin(2nφ
(i)
c )
]2}

≤
[
|α(ρ, n)|2

1 + 2(nσφ)2

]2

.

(4.7)

Note that the upper bound in (4.7) follows from the inequalities cos y ≤ 1 and

sin y ≤ 1, ∀y ∈ [0, 2π).

Substituting (4.6) and (4.7) into (4.5) we derive the bounds to the

eigenvalues of the CPA as

λ1(σφ) ≤ 1 +
1

1 + 2(nσφ)2
(4.8)

λ2(σφ) ≥ 1− 1

1 + 2(nσφ)2
. (4.9)

Fig. 4.3 compares the exact eigenvalue λ2 in (4.5) against the lower

bound in (4.9). The channel is simulated with Nc = 2, mean AOAs generated
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Figure 4.3: Exact eigenvalue (λ2) and lower bound in (4.9) as a function of the mean
AoAs φ1 and φ2. The channel is simulated with Nc = 2, mean AoAs generated in
the range [0, 180o] and σφ = 20o.

in the range [0, 180o] and σφ = 20o. It is possible to see that the lower bound

is close to the exact expression of λ2 for any combination of values of φ1 and

φ2, denoting the mean AOAs of the clusters.

In Fig. 4.4 we compare the bounds to λ1 and λ2 against their exact

expressions as a function of the cluster AS and for different values of Nc. The

mean AOAs are generated as φ
(i)
c = φ̃(i − 1)/Nc (with i = 1, . . . , Nc and

φ̃ = 120o) and variable AS (σφ). Fig. 4.4 shows that the bounds in (4.8) and

(4.9) are close to the exact expression of the eigenvalues in (4.5) for σφ > 15o.

This value corresponds to the lowest AS defined in the IEEE 802.11n channel

model [43], which makes the proposed bound practical for indoor environments
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Figure 4.4: Exact eigenvalues (λ1 and λ2) and bounds in (4.8) and (4.9). The
channel is simulated with variable Nc, mean AoAs generated as φ

(i)
c = φ̃(i− 1)/Nc

(with i = 1, . . . , Nc and φ̃ = 120o) and variable AS (σφ).

in the context of WLANs.

4.3.3 Lower Bound on the Ergodic Capacity

In the subsection 4.2.1 we showed that clustered channel models are de-

fined by a large set of parameters. Optimizing the design of 2-CPAs over many

channel parameters to account for different propagation conditions would be

computationally expensive. In this section we propose a simple lower bound on

the MIMO ergodic capacity expressed as a function of a reduced set of channel

parameters. We show this bound corresponds to the capacity of single-cluster

channels. We use this bound to optimize CPA designs with respect to the

worst case scenario, thereby reducing the computational complexity of the
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optimization algorithm.

A tight lower bound on the MIMO ergodic capacity for zero-mean

single-sided spatially correlated channels with Nr ≤ Nt was proposed in [111]

C ≥ p log

[
1 +

γo

Nt

exp

(
1

p

(
p−1∑
t=0

ψ(q − t) + ln |R|

))]
(4.10)

where p = min(Nr, Nt), q = max(Nr, Nt), γo is the average SNR and ψ(·) is

the Euler Digamma function [111]. For the case of Nr = Nt = 2, equation

(4.10) simplifies as

C ≥ 2 log

[
1 +

γo

2
exp

(
ψ(1) + ψ(2)

2

)√
|R|
]
. (4.11)

From (4.8) and (4.9) we derive a lower bound on the determinant of R

as

|R| = λ1λ2 ≥ 1− 1

[1 + 2(nσφ)2]2
(4.12)

where n is the mode number (assumed to be even) and σφ is the cluster angle

spread (assumed to be the same for all the clusters in the channel). Substi-

tuting (4.12) into (4.11) we obtain the following lower bound on the ergodic

capacity of clustered MIMO channels with CPAs

C ≥ 2 log

[
1 +

γo

2
exp

(
ψ(1) + ψ(2)

2

)√
1− 1

[1 + 2(nσφ)2]2

]
. (4.13)

Note that (4.12) corresponds to the determinant of |R| obtained in single-

cluster channels. Hence, equation (4.13) is the lower bound on the MIMO

capacity achieved with CPAs in single-cluster channels.

68



Figure 4.5: Exact and lower bounds to the MIMO ergodic capacity as a func-
tion of the angle spread (σφ) and different numbers of clusters (Nc) with
SNR = 20 dB. The 2-CPA is simulated with n = 4.

Fig. 4.5 depicts the capacity lower bound in (4.13) as well as the lower

bounds for different number of clusters (Nc) obtained from (4.11) by using

the closed-form correlation coefficients of 2-CPAs derived in subsection 4.3.1.

For reference, we report also the empirical capacity curves obtained by Monte

Carlo simulations. The MIMO channel is simulated with variable angles spread

(σφ) and γo = 20 dB. The 2-CPA is assumed to radiate with mode n = 4.

Fig. 4.5 shows that the lower bound in (4.13) is close to the bounds

obtained from (4.11) for different number of clusters, for any value of angle

spread. We observe that the bound in (4.13) coincides with the case of single-

cluster channels (i.e., poor scattering). Moreover, the capacity loss due to this

bound is only of ∼ 1% compared to the case of Nc = 6 (i.e., rich scattering),
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in the worst case scenario for indoor propagation environments defined by

σφ = 15o [43]. Hence, the lower bound for single-cluster channels in (4.13) can

be used to predict the MIMO channel capacity in any propagation condition

with minimal error. Interestingly, Fig. 4.5 also demonstrates that 2-CPAs with

n = 4 are robust design solutions in any clustered MIMO channel, since they

provide similar capacity either in poor or rich scattering environments.

4.4 MIMO Communication Performance Metrics

In this section, we first present a new definition of spatial correlation,

particularly suitable for studies on pattern diversity. Then, we employ this

definition to numerically compute the capacity performance of CPAs in differ-

ent propagation scenarios as a function of the antenna parameters. Finally,

we propose two MIMO communication performance metrics that will define

the objective function of the proposed optimization algorithm.

4.4.1 Normalized Spatial Correlation

The general definition of spatial correlation between the `-th and m-th

elements of MIMO arrays is given by [112,113]

r`,m =

∫
4π

S(Ω)E`(Ω)E∗
m(Ω)dΩ[∫

4π
S(Ω) |E`(Ω)|2 dΩ

∫
4π

S(Ω) |Em(Ω)|2 dΩ
]1/2 (4.14)

where Ω = (φ, θ) is the solid angle, S(Ω) is the PAS of the scattered fields

and E`(Ω) is the far-field of the `-th antenna of the CPA. Note that (4.14) is

derived from (2.14), where we removed the phase term due to the array element
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spacing since the antennas of the CPA are collocated. Equation (4.14) can be

simplified as in [100], by using the following normalization [29]∫
4π

S(Ω) |E`(Ω)|2 dΩ = 1 (4.15)

defined ∀` = 1, . . . , N . The normalization in (4.15), however, holds only when

either S(Ω) is uniformly distributed over the domain of integration or the

antennas are characterized by isotropic radiation patterns.

In the most general case of “clustered” channel models (where the scat-

tered energy is concentrated around the mean AOAs of the clusters) and no

isotropic antenna radiation patterns (as for antenna designs exploiting pattern

diversity), equation (4.15) is not satisfied for any channel conditions, since the

antenna gain may vary as a function of the clusters mean AOA. Then, we

define a new spatial correlation model as

r`,m =

∫
4π

S(Ω)E`(Ω)E∗
m(Ω)dΩ∫

4π

S(Ω) |Eiso(Ω)|2 dΩ
(4.16)

where Eiso(Ω) is the far-field of ideal isotropic radiators. Note that the enve-

lope of (4.16) is not guaranteed to be lower than one, as for the conventional

definition of correlation in (4.14), since we normalize the spatial correlation

with respect to the antenna gain of ideal isotropic radiators. Moreover, we

assume ∫
4π

S(Ω)dΩ =

∫
4π

|Eiso(Ω)|2 dΩ =

∫
4π

|E`(Ω)|2 dΩ = 1 (4.17)

where the first term of the equality is the condition for S(Ω) to be a p.d.f.,

whereas the last two equalities define the transmit power constraint ∀` =
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1, . . . , N . Consistent with the measurement results in [4], we assume the PAS

over the θ angles is independent from the φ angles and most of the scattered

energy propagates over the azimuth directions. Then, we write S(Ω) = P (φ−

φc)δ(θ−π/2), where φc is the mean AOA of the cluster and P (φ) is generated

according to the truncated Laplacian distribution in (2.1).

In the previous section we derived the closed-form expression of the

auto- and cross-correlation coefficients of CPAs assuming ideal radiation pat-

terns. In practical designs, near-field effects may produce pattern distortion

and affect the performance of the CPA. Hereafter, we evaluate (4.16) numeri-

cally by employing realistic antenna radiation patterns computed with FEKO,

an EM software tool based on the method of moments.

4.4.2 CPA Performance in Clustered MIMO Channels

We evaluate the MIMO capacity of different CPA designs as a func-

tion of the channel characteristics, by varying the physical parameters of the

circular patch antennas. A closed-form exact expression of the MIMO er-

godic capacity (with equal power allocation across the transmit antennas) for

double-sided spatially correlated channels was proposed in [114]. Here, we

compute the capacity in [114] by using the our definition of spatial correlation

in (4.16), which are a function of both channel and antenna parameters. Our

goal is to evaluate the performance of CPAs employed either at the transmit

or receive sides, thus we assume only single-sided spatially correlated channels.

Moreover, we consider only single-cluster channels, for the reason explained in
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subsection 4.3.3.

Fig. 4.6 depicts the MIMO ergodic capacity of the CPA as a function of

the cluster mean AOA (φc) and per-cluster angle spread (σφ), with SNR = 10

dB. The CPA is simulated with parameters ρo = 0.45λ and ρf = 0.64ρo,

h = 1.575 mm and εr = 2.2 to excite mode 3. The radiation patterns of the

two antenna elements of the CPA is given in Fig. 4.7(b). We observe that

the capacity in Fig. 4.6 increases as a function of the AS and saturates to

its maximum value for σφ > 15o. Moreover, the capacity varies with respect

to the mean AOA, unlike the theoretical results presented in [110]. These

oscillations are due to the irregularity of the antenna radiation patterns in

Fig. 4.7(b) (produced by near-field effects), and the notches in the capacity

curve occur at the angles φc = 15o, 195o due to the reduced power radiated

towards those angular directions.

Next, we evaluate the CPA performance with different antenna param-

eters. We consider three values of radius of the circular microstrip antennas:

ρo = 0.39λ, 0.45λ, 0.51λ. In Fig. 4.7 we observe that, by varying the radius ρo

and for fixed frequency of operation (i.e., 2.4 GHz as for WLANs), the shape

and gain of the antenna radiation patterns vary. The value of ρo = 0.45λ

corresponds to the resonant frequency for mode 3 (with h = 1.575 mm and

εr = 2.2) as shown in subsection 3.1.4. We observe that the patterns in Fig.

4.7(b) are irregular due to mutual coupling effects, unlike the ideal radiation

pattern depicted in Fig. 3.2(c) for mode 3. Moreover, by varying the radius ρo

for fixed carrier frequency, it is not possible to excite mode 3 in the microstrip
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Figure 4.6: Ergodic capacity of the CPA as a function of the cluster mean AOA
(φc) and per-cluster AS (σφ), with SNR = 10 dB, ρo = 0.45λ and ρf = 0.64ρo.

(a) ρo = 0.39λ (b) ρo = 0.45λ (c) ρo = 0.51λ

Figure 4.7: Radiation patterns (over the azimuth plane) of the two elements
of the CPA for different values of physical radius ρo, with ρf = 0.64ρo.

anymore, consistently to equation (3.4). As a result, for ρo = 0.39λ the an-

tenna gains are lower than ideal isotropic radiators, while for ρo = 0.51λ all
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the energy is radiated in two opposite spatial directions.

The effect of these radiation patterns on the systems performance is

shown in Fig. 4.8, where we plot the MIMO ergodic capacity as a function of

φc for the three values of ρo above. In the same figure we plot also the “ideal”

MIMO capacity derived in i.i.d. channels, as reference. We note that the best

performance is achieved for ρo = 0.45λ due to the effect of pattern diversity,

whereas for ρo = 0.51λ the capacity reaches its maximum only in those spatial

direction with high antenna gain. Note that the capacity produced by the

CPAs may be higher than the ideal capacity due to the power normalization

in (4.16) with respect to the gain of isotropic radiators. Here, the physical

interpretation of “ideal” performance can be described as the capacity achiev-

able by two ideal isotropic radiators spaced apart at distance much greater

than the wavelength (i.e., ideal array exploiting space diversity).

These results reveal that the CPA performance in realistic clustered

MIMO channels is sensitive to the antenna parameters. Hereafter, we propose

simple metrics to measure the statistical performance of CPAs in clustered

channels, that will be used by the proposed optimization algorithm.

4.4.3 Performance Metrics for Optimization Algorithms

One common metric to evaluate the performance of MIMO arrays ex-

ploiting pattern diversity is the inner product of the antenna radiation pat-
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Figure 4.8: Ergodic capacity of the CPA as a function of the cluster mean
AOA, with σφ = 20o and SNR = 10 dB.

terns [112,113,115]

〈E`, Em〉 =

∫
4π

E`(Ω)E∗
m(Ω)dΩ[∫

4π
|E`(Ω)|2 dΩ

∫
4π
|Em(Ω)|2 dΩ

]1/2 . (4.18)

This metric is derived from (4.14) under the simplistic assumption of uniform

distribution of the multipaths (i.e., S(Ω) has uniform pdf). It is well known

that the assumption of uniformly distributed PAS is not realistic and over-

estimates the MIMO channel capacity [116]. In realistic clustered channel

environments, the MIMO ergodic capacity is a function of the cluster mean

AOA and AS, as shown in Fig. 4.6. To solve the optimization algorithm for

MIMO arrays, however, it is desirable to remove the dependence of the objec-

tive function on the channel parameters and express it only as a function of the
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antenna physical characteristics, as for the metric in (4.18). Hence, we propose

two performance metrics derived from the ergodic capacity that are indepen-

dent on the channel parameters and measure the statistical performance of

MIMO arrays in clustered channels.

We denote with C(x;φc, σφ) the ergodic capacity as a function of the

channel parameters for given CPA design described by x. We define the mean

capacity (C) as

C(x) = Eφc,σφ
{C(x;φc, σφ)}

=

∫ ∞

0

C(x;φc, σφ)fφc,σφ
(φc, σφ)dφcdσφ

(4.19)

where fφc,σφ
(·) is the joint p.d.f. of φc and σφ, and we assume φc and σφ

are independent and with uniform distributions, that is reasonable assump-

tion for practical channel models. The mean capacity measures the average

performance of the array in different propagation scenarios. Additionally, it

is desirable to account for the notches in the capacity curve in Fig. 4.6, by

introducing a notion of “outage”. We define the 10% outage capacity (C10%)

as

P [C(x;φc, σφ) ≤ C10%(x)] =

∫ C10%(x)

0

C(x;φc, σφ)fφc,σφ
(φc, σφ)dφcdσφ = 10%

(4.20)

where P denotes the probability of a random variable. Note that the ergodic

capacity C(x;φc, σφ) in (4.19) and (4.20) is numerically evaluated through the

closed-form expression in [114] and using the definition of spatial correlation

in (4.16).
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Fig. 4.9 compares the three metrics mentioned above: the mean capac-

ity in (4.19), the 10% outage capacity in (4.20) and the conventional envelope

of the inner product in (4.18). The circular patch antennas are simulated

through FEKO with ρf = 0.8ρo, h = 1.575 mm and εr = 6. Different values

of radius are considered ρo = 0.12λ, 0.2λ, 0.29λ, 0.36λ, 0.44λ to excite modes

n = 1, 2, 3, 4, 5, respectively. Note that some values of ρo are slightly different

from the theoretical ones reported in Fig. 3.1 due to near-field effects between

the two antenna elements of the CPA. In Fig. 4.9 it is possible to see that both

Figure 4.9: Comparison of different metrics to evaluate the performance of
pattern diversity.

mean and outage capacity increase as a function of the mode number due to

the beneficial effect of pattern diversity, consistently to the theoretical results

presented in Chapter 3. On the other hand, we observe that the inner product

oscillates around the value of 0.1, since the radiation patterns are orthogonal

78



for any mode number. This result demonstrates that (4.19) and (4.20) are

better measures of the effect of pattern diversity on systems performance, in

realistic clustered MIMO channels, than the conventional inner product (4.18).

Finally, we compute the metrics in (4.19) and (4.20) as a function of the

antenna parameters. Fig. 4.10(a) and Fig. 4.10(b) show the mean and outage

capacity versus radius (ρo) and feeding location (ρf) of the circular microstrip

antennas (with h = 1.575 mm and εr = 2.2). It is possible to see that in

both cases the maximum is reached for ρo ≈ 0.45λ for most of the values of

ρf . These functions will be used in the optimization algorithm to determine

the best values of antenna parameters on the communication theoretic point

of view.

(a) Mean capacity C(x) (b) Outage capacity C10%(x)

Figure 4.10: Mean and 10% outage capacity as a function of the physical
radius (ρo) and the feed location (ρf). The mean and 10% outage capacity are
computed through (4.19) and (4.20), respectively. The two antennas of the
CPA are designed with physical parameters h = 1.575 mm and εr = 6.
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4.5 Microwave Theory Performance Metrics

Hereafter, we present different metrics from microwave theory used to

evaluate the efficiency of CPA designs as a function of the physical antenna

parameters.

4.5.1 S-parameters

The antenna efficiency depends on the losses at the input or within the

structure of an antenna, and indicates the amount of radiated power for given

input power [98]. The antenna efficiency is generally measured in terms of

return loss or S11 and S22 scattering parameters, for 2-port antenna designs.

Typical target value used to measure the bandwidth of S11 and S22 is −10 dB.

Due to the proximity of the two circular patch antennas, the perfor-

mance of the CPA may be affected by mutual coupling effects. Mutual coupling

results in distortion of the antenna radiation patterns [117–121] and power

loss [122–124]. The effect of pattern distortion on the MIMO channel capacity

was shown in Section 4.4.2. Power loss due to mutual coupling is generally

measured in terms of the S12 and S21 scattering parameters, for 2-element

arrays. The target value for the bandwidth of S12 and S21 is −20 dB.

4.5.2 Performance Metrics for Optimization Algorithms

The values of the S-parameters, expressed as a function of the fre-

quency, depend on the physical characteristics of the antennas. To optimize

the physical parameters of CPA designs we employ the bandwidth BW11 and
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BW22 defined as the measure of the set of frequencies for which |S11| and

|S22| are below −10 dB, respectively. Similarly, BW12 and BW21 denote the

bandwidth of |S12| and |S21|, respectively, for the target −20 dB.

Fig. 4.11 depicts the bandwidths BW11 and BW22 for the two ports

of the CPA as a function of the radii ρ
(1)
o and ρ

(2)
o of the two patches. The

bandwidth is expressed in percentage value with respect to the carrier fre-

quency fc = 2.44 GHz for WLANs and is measured within the frequency band

[2.2, 2.7] GHz. Moreover, the substrate of the bottom and top patches are

characterized by ε
(1)
r = 2.2 and ε

(2)
r = 8, respectively. We observe that BW11

and BW22 reach values of ∼ 5% for ρ
(1)
o ≈ 0.42λ and ρ

(2)
o ≈ 0.22λ. These are

the values radius for which the two patch antennas resonate with mode 3 for

the given values of εr, similarly to the theoretical results in Fig. 3.1.

Note that the bandwidth of the circular patch antennas is also a func-

tion of the substrate height h and dielectric constant εr, feed location ρf and

size of the ground plane ρgp as shown in [98,109]. To optimize the CPA design

over these physical parameters we formulate a multidimensional optimization

algorithm as in the following section.

4.6 Optimization Algorithm for 2-CPA Designs

So far, we studied the performance of CPA designs as a function of the

antenna parameters and defined different metrics. Here, we present a novel

algorithm to optimize the performance of CPAs by jointly maximizing perfor-

mance metrics from communication theory (i.e., MIMO channel capacity) and
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Figure 4.11: Bandwidth BW11 and BW22 as a function of the radia ρ
(1)
o and ρ

(2)
o

of the two patch antennas of the CPA. The antenna parameters are: ρ
(1)
f =

0.9ρ
(1)
o , h(1) = 9 mm, ε

(1)
r = 2.2, ρ

(1)
gp = 2ρ

(1)
o , ρ

(2)
f = 0.8ρ

(2)
o , h(2) = 7 mm,

ε
(2)
r = 8, ρ

(2)
gp = 1.8ρ

(2)
o .

microwave theory (i.e., bandwidth).

In Fig. 4.10 we showed that mean and outage capacity of the CPA

vary as a function of x. We define the objective function of the optimization

algorithm based on MIMO communication performance as

gMIMO(x) = w1C(x) + w2C10%(x) (4.21)

where w1 and w2 are weighting values. Note that the values of w1 and w2 can

be chosen depending on whether the design has to be optimized with respect

to average or outage performance.

Similarly, Fig. 4.11 shows the antenna bandwidth is also a function of

x. We denote the bandwidth of the scattering parameter Sij as BWij(x) =
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|[f
ij
(x), f ij(x)]|, where | · | is the measure of a set and f

ij
and f ij characterize

the range of frequencies that satisfy the predefined target (i.e., −10 dB for

S11 and S22, −20 dB for S12 and S21). Moreover, we define BW = [f, f ] as

the target frequency band. For designs conceived for WLANs applications, we

assume BW = [2.4, 2.48] GHz. With these definitions, we write the microwave

theory performance metric as

gMW(x) = IA11(x) IA22(x) IA12(x) IA21(x)− 1 (4.22)

where Aij = {x|f
ij
(x) ≤ f, f ij(x) ≥ f} and IAij

(·) denotes the indicator

function2.

The goal of the proposed optimization algorithm is to determine the

CPA design that provides statistically the best capacity performance in cor-

related channels, while satisfying predefined target bandwidth requirements.

Hence, we use (4.21) as objective function and (4.22) to define the (non-linear)

equality constraint, and formulate the optimization problem as

xopt = arg max
x∈X

{gMIMO(x)|gMW(x) = 0} (4.23)

where the feasible set is given by

S = {x ∈ X|gMW(x) = 0} . (4.24)

2The indicator function is defined as

IA(y) =

{
1 if y ∈ A;
0 otherwise.
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Finally, we solve the optimization problem in (4.23) and find that the

antenna parameters that optimize the performance of the CPA are ρ
(1)
o = 0.43λ

and ρ
(2)
o = 0.22λ, with ρ

(1)
f = 0.9ρ

(1)
o , h(1) = 9 mm, ε

(1)
r = 2.2, ρ

(1)
gp = 2ρ

(1)
o ,

ρ
(2)
f = 0.8ρ

(2)
o , h(2) = 7 mm, ε

(2)
r = 8, ρ

(2)
gp = 1.8ρ

(2)
o . Fig. 4.12 shows the

S-parameters for our proposed CPA design. We observe that the return loss

|S11| and |S22| for the two ports of the CPA is below −10 dB within the target

frequency band BW = [2.4, 2.48] GHz for WLANs. Similarly, the parameters

|S12| and |S21| are way below −20 dB within BW, guaranteeing very good

isolation between the two ports of the CPA.

Figure 4.12: S-parameters for the optimized CPA design with ρ
(1)
o = 0.43λ and

ρ
(2)
o = 0.22λ.
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Chapter 5

Capacity Analysis of Adaptive MIMO Systems

MIMO technology exploits the spatial components of the wireless chan-

nel to provide significant capacity gain and increased link robustness, through

multiplexing and diversity techniques. Understanding the tradeoffs between

multiplexing and diversity schemes is critical in designs of adaptive algorithms

that switch between different MIMO schemes as a function of the propaga-

tion conditions. One way to study these diversity/multiplexing tradeoffs in

spatially correlated channels is by theoretical capacity analysis. This chapter

first presents a general overview on adaptive MIMO systems. Then, theoret-

ical closed-form capacity expressions are derived for different types of space-

time encoder/decoders in spatially correlated channels. These capacity expres-

sions are used to analyze the relative performance of the MIMO transmission

schemes in different propagation scenarios.

5.1 Introduction

This section first presents a background on adaptive MIMO systems.

Then describes the system and channel models used for theoretical capacity

analysis. Finally, it provides an overview on common MIMO transmission
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techniques and reviews some recent advances in the analysis of the theoretical

capacity of these schemes in spatially correlated channels.

5.1.1 Background on Adaptive MIMO Systems

Various MIMO techniques such as beamforming, spatial multiplexing,

space-time coding (see [33] and references within) have been proposed to ex-

ploit the channel characteristics in different ways. The suitability and per-

formance of a given MIMO technique depends on the channel characteristics.

For instance, for line-of-sight (LOS) rank-deficient channels, or channels with

high levels of spatial correlation, it is well known that robust diversity-based

schemes such as beamforming or space-time coding should be employed. On

the other hand, for rich-scattering environments spatial multiplexing tech-

niques yielding high spectral efficiencies are more appropriate.

Performance tradeoffs between multiplexing and diversity have been

studied in an information-theoretic sense in [125]. Practical adaptive algo-

rithms to switch between transmit diversity (TD) and spatial multiplexing

schemes were proposed in [126, 127]. The algorithm described in [126] ex-

ploited the instantaneous channel knowledge to improve error rate performance

for fixed data rate transmission. The adaptive method in [127] was designed

to enhance spectral efficiency, exploiting statistical time/frequency selectivity

indicators.

Alternatively, the spatial selectivity of the channel is another dimen-

sion that can be explored. The spatial selectivity, defined as in [71], depends
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on the characteristics of the propagation environment such as angle spread,

number of scatterers, angle of arrival/departure [16, 24]. The effect of the

spatial selectivity is to create statistically uncorrelated signals across different

antennas of the MIMO array and it is typically revealed through the eigenval-

ues of the transmit and receive spatial correlation matrices [128]. The spatial

correlation across the array elements affects the capacity [33] and error rate

performance [73] of MIMO systems.

In this dissertation we present a new MIMO transmission approach

that adapts to the changing channel conditions based on the spatial selectivity

information. The proposed system switches between different MIMO trans-

mission schemes as a means of approaching the spatially-correlated MIMO

channel capacity with low-complexity. Since the adaptation is based on the

long-term spatial characteristics of the channel, it can be carried out at slow

rate, avoiding feedback overhead.

We consider four low-complexity open-loop MIMO schemes, namely

statistical beamforming (BF)1, orthogonal space-time block codes (OSTBC),

double space-time transmit diversity (D-STTD) and spatial multiplexing (SM).

In this chapter we derive new closed-form capacity results for BF, OSTBC, D-

STTD and SM with linear receivers, and demonstrate the significant information-

theoretic improvements obtained by adapting between these schemes based on

the spatial selectivity information. We also show that the capacity of our low-

1We define statistical BF as an open-loop scheme, under the assumption of up-
link/downlink reciprocity of the channel spatial statistics.
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complexity system approaches that of the optimal solution. We then derive

accurate analytical approximations for the signal-to-noise ratios (SNR) corre-

sponding to the crossing-points of the BF, OSTBC and SM capacity curves.

These crossing-points determine the relative performance of the transmission

schemes, and are shown to depend explicitly on the channel statistics through

the eigenvalues of the spatial correlation matrices.

5.1.2 System and Channel Models

We model the receive signal vector of a narrowband MIMO system,

employing Nt transmit and Nr receive antennas, as in (3.1)

y =
√
γHx + n (5.1)

where x ∈ CNt×1 is the transmit signal vector satisfying the power constraint

E
[
x†x
]

= Nt, and n ∈ CNr×1 is the noise vector ∼ CN (0Nr×1, INr). Also, H ∈

CNr×Nt is the spatially-correlated Rayleigh fading channel matrix, assumed to

be known perfectly at the receiver, γ = γo/Nt is the average SNR per transmit

antenna, γo = Es/No is the average SNR, Es is the average energy per transmit

symbol and No is the noise variance.

Under the narrowband assumption, we simplify the model for correlated

Rayleigh MIMO channels in (2.12) as

H = R1/2ZS1/2 (5.2)

where Z ∈ CNr×Nt contains independent complex i.i.d. Gaussian entries with

zero mean and unit variance, and S and R denote the transmit and receive
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spatial correlation matrices respectively. We normalize the MIMO channel

matrix such that E [||H||2F ] = NrNt and define

RH = S⊗R. (5.3)

The matrices RH , S and R have the eigenvalue decompositions

RH = UHΛHU†
H , S = UsΛsU

†
s, R = UrΛrU

†
r. (5.4)

5.1.3 MIMO Transmission Techniques

This section reviews four common MIMO transmission schemes: BF,

OSTBC, D-STTD and SM. These schemes have been actively considered by

different standardization bodies [8–11,13–15] and will be part of the adaptive

MIMO transmission method proposed in this Chapter 7.

Beamforming (BF) schemes multiply the transmit symbols by the com-

plex weights of a spatial filter. With ns = 1, the transmit signal in (5.1) is a

vector x defined as

x = wa (5.5)

where a ∈ C is the transmit symbol and w ∈ CNt×1 is the weight vector.

There are two ways of implementing beamforming: based on the instantaneous

or statistical channel information. When instantaneous BF is employed, the

transmitter needs to know the channel state information (CSI) via feedback

channels or by exploiting the uplink/downlink channel reciprocity. Statistical

BF estimates the weight vector from the dominant eigenvector of the chan-
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nel spatial correlation matrix and, hence, feedbacks are not required if the

uplink/downlink reciprocity of the channel statistics can be exploited.

Statistical BF is in fact the optimal transmission strategy in the low

SNR regime, when only the channel distribution information is available at

the transmitter. The optimality condition for BF to be capacity achieving

was derived in [129] for multiple-input single-output (MISO) systems. These

results were extended to MIMO systems in [130,131] for single-sided correlated

and Rician channels and in [132] for double-sided correlated channels. Knowing

the optimal solution of the transmit covariance matrix, it is possible to derive

bounds and exact expressions of the ergodic capacity. The main results in this

area are derived for MISO systems in [133] and for MIMO systems in [134,

135], where exact expressions of the ergodic capacity and cumulative density

function of the mutual information were computed for single-sided correlated

MIMO channels. In this chapter, new closed-form capacity expressions are

derived to extend these results to double-sided spatially correlated channels.

Orthogonal Space-Time Block Codes (OSTBC) transmits parallel streams

over ns consecutive symbol periods and the symbols are encoded across differ-

ent antennas. For the Alamouti scheme [35], the transmit signal matrix X in

(5.1) is given by

X
4
=
[

x(0) x(1)
]

=

[
a1 −a∗2
a2 a∗1

]
(5.6)

where x(0) and x(1) are the transmit signal vectors for the first and second

symbol periods, respectively. In the following sections we propose a novel
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closed-form capacity expression for OSTBC in double-sided correlated MIMO

channels.

Double space-time transmit diversity (D-STTD) scheme was first pro-

posed in [38] to achieve both diversity and multiplexing gains. D-STTD trans-

mits parallel streams over four antennas in ns = 2 consecutive symbol periods,

and the symbols are encoded over each pair of antennas according to the Alam-

outi scheme [35]. For D-STTD scheme, the transmit signal matrix X in (5.1)

is given by

X
4
=
[

x(0) x(1)
]

=


a1 −a∗2
a2 a∗1
a3 −a∗4
a4 a∗3

 (5.7)

where x(0) and x(1) are the transmit signal vectors for the first and second

symbol periods, respectively. There is not much analysis done on the theoret-

ical capacity of D-STTD. In this chapter we present a general expression of

the ergodic capacity of D-STTD.

Spatial multiplexing (SM) can be implemented as closed-loop or open-

loop scheme. In closed-loop SM, the channel is assumed to be known at the

transmitter and multiple parallel streams are transmitted over the eigenmodes

of the channel. This scheme has been proved to be the capacity achieving

strategy [33,132]. In open-loop SM, no channel state information is available at

the transmitter and equal power is allocated across different transmit antennas.

With ns = 1, the transmit signal vector x in (5.1) is given by

x = [a1, a2, ..., aNt ]
T (5.8)
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where am ∈ C is the signal transmitted from the mth antenna. At the receiver,

both linear or non-linear filters [33] can be implemented to demodulate the

parallel data streams transmitted through SM.

For MIMO systems employing open-loop SM with non-linear receivers

the exact ergodic capacity was computed in integral form for single-sided cor-

related channels in [136–138] and for double-sided correlated channels in [114].

Tight upper bounds on the ergodic capacity are provided in closed-form in [104]

for double-sided correlated MIMO channels and in [111, 139] for Rician spa-

tially correlated channels. In this chapter, we propose a newly derived ex-

act capacity expression of SM with linear receivers for single-sided correlated

MIMO channels, to enable the analysis on the adaptive MIMO transmission

scheme.

5.2 Optimal MIMO Capacity with Covariance Feedback

We first present the optimal capacity-achieving transmission strategy

for the case of CDIT. The ergodic MIMO capacity is achieved using zero-mean

Gaussian input signalling, and is given by the well-known formula

C = max
Q:tr(Q)=Es

E

[
log2

∣∣∣∣INr +
HQH†

No

∣∣∣∣] (5.9)

where the maximization is over the set of all power-constrained input co-

variance matrices Q. Under the assumptions in Section 5.1.2 for zero-mean

spatially correlated channels, the capacity achieving Q is given by [132]

Qopt = UsΛ
opt
Q U†

s (5.10)
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where Λopt
Q is the diagonal power allocation matrix

Λopt
Q = arg max

ΛQ:tr(ΛQ)=Es

E

[
log2

∣∣∣∣∣INr +
Nt∑
i=1

λs,iλ
Q
i wiw

†
i

No

∣∣∣∣∣
]

(5.11)

where

wi =
[√

λr,1wi,1, . . . ,
√
λr,Nrwi,Nr

]T
(5.12)

and where wi,j are i.i.d. complex Gaussian random variables with zero mean

and unit variance. Also, λs,i, λr,i and λQ
i denote the ith eigenvalue of S, R

and Q respectively. From (5.11) and (5.12) we see that the capacity achieving

transmission scheme (defined by Qopt) depends explicitly on the eigenvalues

of the transmit and receive correlation matrices. Unfortunately, for any given

S and R, the calculation of Λopt
Q requires numerical optimization which is

undesirable when designing practical systems due to its high computational

complexity. The aim of the proposed adaptive method is to approximate the

optimal capacity2 by switching between low-complexity MIMO transmission

schemes depending on the channel conditions.

5.3 Closed-form Capacity in Correlated Channels

We now present capacity expressions for the following transmission

techniques: BF, OSTBC, D-STTD and SM. In the next section we compare

these capacities with the optimal capacity in (5.9), and show that the ca-

2For the rest of the dissertation, we use the term “optimal capacity” to refer to the
capacity with optimum signalling in MIMO systems with only channel covariance feedback,
given by (5.10) and (5.11).
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pacity obtained by adaptively switching across these low-complexity schemes

approaches the optimal capacity.

5.3.1 Statistical Beamforming (BF)

In this subsection we derive a new closed-form exact capacity expres-

sion for statistical BF transmission in double-sided correlated channels. We

also derive a tight upper bound, which will be particularly useful for examin-

ing the relative performance of BF and SM, as shown in the next section, and

for identifying switching criteria for our practical adaptive algorithm. Note

that BF capacity expressions were previously derived in [133] and [134, 135]

for MISO and MIMO systems, respectively. These results, however, only con-

sidered MIMO channels with single-sided correlation.

Throughout this chapter, we assume that the BF receiver employs max-

imum ratio combining (MRC). The input covariance matrix for this system is

given by

QBF = UsΛBFU
†
s (5.13)

where

ΛBF = diag (Es, 0, . . . , 0) (5.14)

Note that the first column of Us is the eigenvector corresponding to the largest

eigenvalue of S, which we denote λs,max. As mentioned in [132] and [130],

statistical BF is in fact optimum (ie. ΛBF = Λopt) in the low SNR regime.

Exact Ergodic Capacity
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Using (5.13) and (5.2) in (5.9) gives

CBF = E

[
log2

∣∣∣∣INr +
1

No

R1/2ZS1/2QBFS†/2Z†R†/2

]∣∣∣∣ . (5.15)

Next, substituting the eigenvalue decompositions (5.4) and (5.13), yields

CBF = E

[
log2

∣∣∣∣INr +
1

No
UrΛ1/2

r U†
rZUsΛ1/2

s U†
sUsΛBFU†

sUsΛ1/2
s U†

sZ
†UrΛ1/2

r U†
r

∣∣∣∣] .

(5.16)

Since Us and Ur are unitary matrices, we get U†
sUs = INt and the matrices

U†
rZ and ZUs (respectively U†

sZ
† and Z†Ur) have the same distribution as Z

(respectively Z†), recognizing that Z is invariant under unitary transformation.

With these properties, the expectation in (5.16) is statistically equivalent to

CBF = E

[
log2

∣∣∣∣INr +
1

No

Λ1/2
r ZΛ1/2

s ΛBFΛ
1/2
s Z†Λ1/2

r

∣∣∣∣] . (5.17)

Substituting (5.14) into (5.17) we obtain

CBF = E
[
log2

∣∣INr + γoλs,maxz̃z̃
†∣∣] (5.18)

where z̃ =
[√

λr,1z1, ...,
√
λr,NrzNr

]T
, and the zi’s are i.i.d. zero mean unit

variance complex Gaussian random variables. Note that zi is the i-th entry of

the first column of Z. We now invoke the property

|In + AB| = |Im + BA| (5.19)

for arbitrary A ∈ Cn×m and B ∈ Cm×n, to obtain

CBF = E
[
log2

(
1 + γoλs,maxz̃

†z̃
)]

(5.20)

= E

[
log2

(
1 +

γoλs,maxη

2

)]
(5.21)
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where

η =
Nr∑
i=1

λr,iεi (5.22)

where the εi’s are i.i.d. exponentially-distributed random variables and, as

such, η is a central quadratic form. Since the exponential distribution is a

special case of the chi-squared distributed with even (ie. 2) degrees of freedom,

we use a general result from [140] to represent the p.d.f. of η as

f(η) =
Nr∑
i=1

Ai p(λr,iη) (5.23)

where p(·) denotes an exponential p.d.f., and

Ai =

(
Nr∏
j=1

(−2λr,j)
−1

)(
Nr∏

j=1,j 6=i

(
1

2λr,i

− 1

2λr,j

)−1
)

=
Nr∏

j=1,j 6=i

(
λr,i

λr,i − λr,j

)
. (5.24)

Hence we have

f(η) =
Nr∑
i=1

Nr∏
j=1,j 6=i

(
λr,i

λr,i − λr,j

) exp
(
− η

2λr,i

)
2λr,i

. (5.25)

The capacity is now given by

CBF =

∫ ∞

0

log2

(
1 +

γoλs,maxη

2

)
f (η) dη

=
Nr∑
i=1

Nr∏
j=1,j 6=i

(
λr,i

λr,i − λr,j

)∫ ∞

0

log2

(
1 +

γoλs,maxη

2

) exp
(
− η

2λr,i

)
2λr,i

dη.

(5.26)

To evaluate the integrals in (5.36) we use the property [141]∫ ∞

0

ln(1 + βx) exp(−µx) dx = − 1

µ
exp

(
µ

β

)
Ei

(
−µ
β

)
(5.27)
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for Re(µ) > 0 and −π < arg β < π, where Ei(·) is the exponential integral.

For Hermitian positive definite R, the required conditions are met, and we use

(5.37) to obtain

CBF = − 1

ln 2

Nr∑
i=1

(
Nr∏

j=1,j 6=i

(
λr,i

λr,i − λr,j

)
exp

(
1

γoλs,maxλr,i

)
Ei

(
− 1

γoλs,maxλr,i

))
.

(5.28)

We clearly see that the BF capacity depends explicitly on the long-term chan-

nel characteristics through the eigenvalues of the spatial correlation matrices.

Ergodic Capacity Upper Bound

We upper bound the BF capacity by applying Jensen’s inequality to

(5.20) as follows

CBF = E
[
log2

(
1 + γoλs,maxz̃

†z̃
)]

(5.29)

≤ log2

(
1 + γoλs,max E

[
z̃†z̃
])

(5.30)

= log2 (1 + γoλs,maxNr) . (5.31)

Note that this upper bound applies for both single-sided and double-sided

correlated Rayleigh MIMO channels.

Numerical Capacity Results

In Fig. 5.1 we present BF capacity curves based on the exact expres-

sion (5.28) and upper bound (5.31). The correlated MIMO channels are gen-

erated according to IEEE 802.11n Model D (NLOS) in [43]. For comparison,

empirically-generated BF capacity curves, obtained using (5.9), are also shown.
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We clearly see that, in all cases, the exact capacity curves match precisely with

the empirical results, and the upper bound is tight.

Figure 5.1: Empirical, exact and upper bound on the ergodic capacity of BF, in
double-sided correlated channel Model D (NLOS), with different antenna configura-
tions (Nt ×Nr).

5.3.2 Orthogonal Space-Time Block Codes (OSTBC)

In this subsection we derive a new closed-form expression and a much

simpler upper bound expression for the capacity of OSTBC with a MRC re-

ceiver in spatially-correlated channels. These results will be used to investigate

the relative performance of OSTBC with respect to SM transmission in various

correlated channel scenarios.

The ergodic capacity of OSTBC can be expressed as

COSTBC = RcE

[
log2

(
1 +

γo

RcNt

||H||2F
)]

(5.32)
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where H = R1/2ZS1/2 is the double-sided correlated MIMO channel matrix,

generated according to the stochastic model in Section 2.4.2. Moreover, Rc =

ns/N is the rate of the OSTBC, ns is the number of symbols transmitted per

block and N is the number of symbol periods per block. For double-sided

spatially correlated channels we find

||H||2F = vec(H)†vec(H)

= vec(Z)†RHvec(Z)

= vec(Z)†UHΛHUHvec(Z)

= vec(Z)†ΛHvec(Z)

=
1

2

r∑
i=1

λH,iεi (5.33)

where RH is defined in (5.3), r = rank(RH), λH,i are the non-zero diago-

nal entries of ΛH in (5.4) and εi’s are i.i.d. exponentially distributed random

variables. Note that we invoke the property

vec(H) = (S1/2 ⊗R1/2)vec(Z) = R
1/2
H vec(Z) (5.34)

following from (5.3). We now define η =
∑r

i=1 λH,iεi, which is clearly a central

quadratic form in Gaussian random vectors. Using a general result from [140],

the p.d.f. of η is found to be

f(η) =
r∑

i=1

(
r∏

j=1,j 6=i

λH,i

λH,i − λH,j

)
exp

(
− η

2λH,i

)
2λH,i

. (5.35)
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Using (5.32) and (5.35), the capacity is now given by

COSTBC = Rc

∫ ∞

0

log2

(
1 +

γo

2RcNt

η

)
f (η) dη

= Rc

r∑
i=1

r∏
j=1,j 6=i

(
λH,i

λH,i − λH,j

)

×
∫ ∞

0

log2

(
1 +

γo

2RcNt

η

) exp
(
− η

2λH,i

)
2λH,i

dη. (5.36)

To evaluate the integrals in (5.36) we use the property [141]∫ ∞

0

ln(1 + βx) exp(−µx) dx = − 1

µ
exp

(
µ

β

)
Ei

(
−µ
β

)
(5.37)

for Re(µ) > 0 and −π < arg β < π, where Ei(·) is the exponential integral.

For Hermitian positive definite Q, the required conditions are met, and we use

(5.37) to obtain

COSTBC = − Rc

ln 2

r∑
i=1

(
r∏

j=1,j 6=i

(
λH,i

λH,i − λH,j

)

× exp

(
RcNt

γoλH,i

)
Ei

(
− RcNt

γoλH,i

))
. (5.38)

We clearly see that the OSTBC capacity depends explicitly on the long-term

channel characteristics through the eigenvalues of the spatial correlation ma-

trices.

We can derive a simpler expression which provides more insights by ex-

amining the upper bound on OSTBC capacity by applying Jensen’s inequality

to (5.32) to obtain

COSTBC ≤ Rc log2

(
1 +

γo

Rc

Nr

)
. (5.39)
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Figure 5.2: Empirical, exact and upper bound on the ergodic capacity of
OSTBC for 2x2, 2x4 and 2x6 MIMO systems. The exponential model is used,
with ρtx = 0.5 and ρrx = 0.1.

Note that this upper bound applies for both single-sided and double-sided

correlated Rayleigh MIMO channels.

In Fig. 5.2 we compare the capacity expression (5.38) and upper bound

(5.39) with empirically generated (simulated) capacity curves, in exponen-

tially correlated channels with various antenna configurations. We see that

the closed-form expression (5.38) is exact and the upper bound (5.39) is tight

in all cases.

5.3.3 Double Space-Time Transmit Diversity (D-STTD)

In this subsection we consider the capacity of D-STTD. Although closed-

form solutions are difficult to obtain even for the simplest case of i.i.d. Rayleigh

MIMO channels (see below), here we formulate a new capacity expression suit-
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able for efficient numerical evaluation.

Consider the D-STTD scheme proposed in [38] where Nt = 4 transmit-

ted symbols (denoted x1, . . . , x4 in the following) are encoded over 2 consecu-

tive channel uses. Following the notations in [38], we define the stacked signal

vectors

ȳ
4
=


ȳ1

ȳ2
...

ȳNr

 , x̄
4
=


a1

a∗2
a3

a∗4

 , H
4
=


H1,a H1,b

H2,a H2,b
...

...
HNr,a HNr,b

 (5.40)

with ȳm = [ym(0), y∗m(1)]T and

Hm,a
4
=

[
hm,1 −hm,2

h∗m,2 h∗m,1

]
, Hm,b

4
=

[
hm,3 −hm,4

h∗m,4 h∗m,3

]
. (5.41)

where hi,j denotes the (i, j)th entry of the MIMO channel matrix H in (5.1).

The equivalent input-output relation for D-STTD transmission can then be

written as

ȳ =

√
Es

Nt

Hx̄ + n̄ (5.42)

where n̄ is the complex Gaussian noise. Note that the elements ȳm of the

equivalent received vector ȳ contain the signals at the mth receive antenna

over the two consecutive symbol time-slots.

As for SM, we consider low-complexity linear receivers. The post-

processing SNR for the kth stream (ie. γk) in this case is then given by (5.47)

and (5.48) for MMSE and ZF receivers, respectively, but with H replaced by

the equivalent D-STTD channel matrix H in (5.40).
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The D-STTD capacity with linear receivers can be derived based on an

approach similar to [142] (where linear-dispersion codes were considered), and

has the expression

CD−STTD = Eγk

[
1

2

Nt∑
k=1

log2(1 + γk)

]
(5.43)

where the normalization factor of 1
2

accounts for the two channel uses spanned

by the D-STTD symbols. To evaluate (5.43), we require a closed-form ex-

pression for the p.d.f. of γk. Such an expression cannot be obtained even in

the simplest i.i.d. Rayleigh case since HH† does not follow a complex Wishart

distribution. However the computation of (5.43) can be made efficient by ob-

serving that γ1 = γ2 and γ3 = γ4 and, moreover, that the random variables γk

(for k = 1, . . . , 4) are identically distributed (See Appendix A for proof). As

such, (5.43) can be simplified as3

CD−STTD = 2 Eγ [log2 (1 + γ)] . (5.44)

5.3.4 Spatial Multiplexing (SM)

In this subsection we derive a new closed-form exact capacity expression

for SM with linear receivers. As for the BF case, we also derive a tight upper

bound which will be useful for examining the relative performance of BF and

SM in the next section, and for identifying switching criteria for our practical

algorithm.

3Note that we drop the k subscript since the SNR statistics are identical for each stream.
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For SM transmission, we assume equal-power allocation across the Nt

transmit antennas, such that the input covariance matrix is given by

QSM =
Es

Nt

INt . (5.45)

In this case, the SM capacity has been investigated in the literature when high

complexity maximum-likelihood (ML) receivers are employed. In particular,

exact expressions and tight bounds are now available for both single-sided [137,

138] and double-sided [114] correlated Rayleigh MIMO channels. Recently,

in [111, 139] capacity bounds were also derived for SM with ML recievers,

for the more general case of double-sided correlated Rician MIMO channels.

In [143], it was shown that, for systems with Nt ≤ Nr, SM transmission with

ML receivers is in fact optimum (ie. QSM = Qopt) in the high SNR regime.

In contrast, closed-form capacity results for SM systems employing low

complexity linear receivers do not appear to be available.

Exact Ergodic Capacity

For SM with linear receivers, the MIMO channel is effectively decoupled

into Nt parallel streams, for which the capacity is given by [144]

CSM =
Nt∑

k=1

Eγk
[log2 (1 + γk)] (5.46)

where γk is the conditional post-processing SNR for the k-th stream. We

consider minimum mean-square error (MMSE) and zero-forcing (ZF) linear
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receivers, for which γk is given by

γk =
1[(

INt + γo

Nt
H†H

)−1
]

k,k

− 1 (5.47)

and

γk =
γo

Nt

1[
(H†H)−1

]
k,k

(5.48)

respectively [145], where [·]k,k denotes the kth diagonal element.

The expectations in (5.46) cannot be computed in closed-form in gen-

eral. To make our analysis mathematically tractable, for the remainder of this

section we consider transmit correlated Rayleigh MIMO channels (ie. R = INr)

and ZF receivers4. Note, however, that MMSE receivers slightly outperform

ZF receivers at low to moderate SNRs, and hence these receivers will be con-

sidered for our practical adaptive system proposed in Chapter 7. For the ZF

case with transmit correlation, γk has p.d.f. [144]

f (γk) =
Nt [S−1]k,k

γo

exp

(
−

γkNt[S−1]
k,k

γo

)
Γ (Nr −Nt + 1)

(
γkNt [S−1]k,k

γo

)Nr−Nt

(5.49)

Using (5.49), along with the identity [134]∫ ∞

0

ln (1 + by) yn−1 exp (−cy) dy = Γ (n) exp
(c
b

) n∑
m=1

Γ
(
−n+m, c

b

)
cmbn−m

(5.50)

where Γ (·, ·) is the incomplete gamma function, and the relation [146][
S−1
]
k,k

=

∣∣Skk
∣∣

|S|
(5.51)

4Note that the results also apply for channels with receive correlation when Nr = Nt. In
this case, S is replaced by R in the final expression.
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where Skk corresponds to S with the kth row and column removed, the SM

capacity (5.46) can be evaluated as

CSM =
Nt∑

k=1

exp

(
|Skk|Nt

|S|γo

)
ln 2

Nr−Nt+1∑
m=1

Γ

(
m−Nr +Nt − 1,

|Skk|Nt

|S|γo

)
(
|Skk|Nt

|S|γo

)m−Nr+Nt−1
. (5.52)

As for the BF case, we see that the SM capacity depends on the long-term

channel characteristics through the eigenvalues of the spatial correlation ma-

trix (i.e. through the determinant). This dependence is exploited by our prac-

tical adaptive algorithm presented in Chapter 7.

Ergodic Capacity Upper Bound

We upper bound the capacity of SM with ZF receivers by applying

Jensen’s inequality to (5.46) as follows

CSM =
Nt∑

k=1

Eγk
[log2 (1 + γk)]

≤
Nt∑

k=1

log2 (1 + Eγk
[γk]) (5.53)

We evaluate the expectations in (5.53) using the p.d.f. of γk given in (5.49),

and the identity [141] ∫ ∞

0

xn exp (−µx) dx = n!µ−n−1 (5.54)

for <e [µ] > 0, and simplify the resulting expression to obtain the capacity

upper bound

CSM ≤
Nt∑

k=1

log2

(
1 +

(Nr −Nt + 1) |S| γo

Nt |Skk|

)
(5.55)
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Numerical Capacity Results

Fig. 5.3 compares the exact capacity (5.52) and upper bound (5.55) for

SM with ZF receivers against the empirical results obtained from Monte Carlo

simulations. As for the BF case, we generated the MIMO channel according

to Model D (NLOS) in [43], with single-sided correlation and different antenna

configurations. Fig. 5.3 shows perfect match between the exact and empirical

capacity and the upper bound is relatively tight, especially for high numbers

of receive antennas.

Figure 5.3: Empirical, exact and upper bound on the ergodic capacity of (2×Nr)
SM system with ZF receiver, in single-sided correlated channel Model D (NLOS).

5.4 Relative Capacity Investigation

In this section we invoke the results of the preceding section to inves-

tigate the relative capacity performance of BF, OSTBC, D-STTD and SM

schemes in spatially-correlated Rayleigh MIMO channels.
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5.4.1 Comparison of BF, D-STTD and SM Ergodic Capacities

In Fig. 5.4 we present ergodic capacity curves for BF, D-STTD with

ZF receivers, and SM with ZF receivers, based on (5.28), (5.44) and (5.46),

respectively. Results are shown for a 4 × 4 MIMO system, and the channel

is generated according to IEEE 802.11n channel Model F (NLOS) [43]. The

optimal capacity curve is also shown for comparison, which were generated

by numerically solving the optimization problem (5.11). Note that, since the

objective function in (5.11) is not convex, and because the problem is subject

to an equality constraint, the maximization in (5.11) was performed using a

constrained genetic algorithm [147].

Figure 5.4: Mean capacity for BF, D-STTD (with ZF), SM (with ZF) and
optimal transmission in the IEEE 802.11n channel Model F (NLOS).

As marked on the figure, we see that the capacity curves for the three

low complexity schemes intersect, and that each scheme provides the highest
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capacity, with respect to the others, for a certain range of SNRs. Specifi-

cally, we see that at low SNRs BF achieves the highest capacity of the low

complexity schemes. In fact, for SNRs below −5 dB, BF achieves the opti-

mal capacity, which agrees with previous results in [130, 132]. For moderate

SNRs (i.e. between 4 dB and 18 dB), D-STTD achieves the highest capacity,

whereas SM performs the best for high SNRs. We note that the capacity gap

at large SNR between the SM and optimal capacity curves could be reduced

by employing other higher-complexity receivers than linear receivers, such as

successive interference cancelation (SIC). For our practical adaptive algorithm

presented in Chapter 7 however, we consider low-complexity codes for which

linear receivers are preferable over SIC receivers (for more details, see [148]).

These results demonstrate that there are significant capacity benefits

to be gained (over fixed transmission) by adaptively switching between the low

complexity transmission schemes we are considering, based on the operating

SNR. As seen from the figure, such an adaptive scheme would perform closer

to the optimal curve for all SNRs. Note, however, that although optimal

transmission still yields a noticeable capacity advantage at many SNRs, this

transmission approach is not suitable for practical MIMO systems due to the

high computational complexity involved in solving the optimization problem

(5.11). On the other hand, our low complexity adaptive MIMO approach is

particularly suited to practical systems.

Fig. 5.5 shows capacity curves for the same low complexity transmission

schemes as in Fig. 5.4, comparing different channel correlation scenarios. In

109



particular, IEEE 802.11a Models C and F [43] are considered, where Model C is

characterized by a lower angle spread and a smaller number of scatterer clusters

than Model F, resulting in higher levels of spatial correlation. We see that the

relative capacity performance of the transmission schemes varies significantly,

depending on the channel correlation scenario. Specifically, for Model C the

crossing points of the BF/D-STTD and D-STTD/SM capacity curves (marked

on the figure as CP1 and CP2, respectively) occur at SNRs thresholds of 8.2

dB and 31.8 dB, respectively. For Model F, these thresholds occur at the much

lower SNRs of 3.7 dB and 18.4 dB respectively. These results suggest that a

practical switching algorithm for the proposed low complexity adaptive MIMO

approach (i.e. based on BF, D-STTD, and SM), should be designed to exploit

both the average SNR and channel spatial correlation information.

Figure 5.5: Mean capacity for BF, D-STTD (with ZF), SM (with ZF) in
the IEEE 802.11n channel Models C and F (NLOS). CP1: crossing-point BF
versus D-STTD; CP2: crossing-point D-STTD versus SM.
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In the following subsection, we gain further insights into the key pa-

rameters affecting the relative capacity performance, by deriving closed-form

theoretical expressions for the capacity crossing-points in some representative

scenarios, for the case of BF and SM transmission.

5.4.2 Capacity Crossing-Points between BF and SM

Our crossing-point investigation is based on the tight upper bounds

(5.31) and (5.55), for BF and SM transmission respectively. To derive the

theoretical crossing points it is useful to manipulate the SM capacity (5.55)

into a slightly different form. We start by writing

CSM ≤ log2

(
Nt∏

k=1

(
1 +

(Nr −Nt + 1) |S| γo

Nt |Skk|

))

= log2

∣∣∣∣INt + diag

(
(Nr −Nt + 1) |S| γo

Nt |Skk|

)∣∣∣∣ (5.56)

Now, using a determinant expansion from [149, pp. 88], we express the SM

capacity as a polynomial in γo as follows

CSM ≤ log2

(
1 +

Nt∑
k=1

γk
o

(
Nr −Nt + 1

Nt

)k

trk

(
diag

(
|S|
|S11|

, . . . ,
|S|

|SNtNt|

)))

= log2

(
1 +

Nt∑
k=1

γk
o

(
Nr −Nt + 1

Nt

|S|
)k

trk (A)

)
(5.57)

where

A = diag

(
1

|S11|
, . . . ,

1

|SNtNt|

)
. (5.58)
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and where trk(·) denotes the kth elementary symmetric function (e.s.f.), defined

as [146,150]

trk(X) =
∑
{α}

k∏
i=1

λx,αi
=
∑
{α}

∣∣Xα
α

∣∣ (5.59)

for arbitrary Hermitian positive-definite X ∈ Cn×n. In (6.47), the sum is over

all ordered α = {α1, . . . , αk} ⊆ {1, . . . , n}, λx,i denotes the ith eigenvalue of

X, and Xα
α is the k × k principle submatrix of X formed by taking only the

rows and columns indexed by α.

Comparing (5.57) with the BF capacity bound in (5.31) we find that

the SNR threshold γCP corresponding to the capacity crossing-point is given

by the positive solution to the polynomial equation

Nt∑
k=1

γk−1
CP

(
Nr −Nt + 1

Nt

|S|
)k

trk (A)−Nrλs,max = 0. (5.60)

We now present closed-form expressions for γCP for two special cases,

in order to gain further insight.

Case: 2×Nr

In this case, from (5.58) and (6.47) we have tr1 (A) = 2 and tr2 (A) = 1,

and it is easily shown that the solution to (5.65) is given by

γCP =
4 (Nrλs,max − (Nr − 1)|S|)

(Nr − 1)2 |S|2
. (5.61)

This result shows that the SNR thresholds, defining the relative performance

of the low complexity transmission schemes, depend explicitly on the eigen-

values of the transmit correlation matrix (i.e. through the determinant). This
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information is exploited in our proposed practical switching algorithm, as de-

tailed in the following section. It is also interesting to observe that the capacity

crossing-point varies inversely to the number of receive antennas, indicating

that the relative capacity improvement due to the increased receive diversity

is greater for SM transmission than for BF.

For the special case Nr = 2, the capacity crossing-point further simpli-

fies as follows

γCP =
4

|S|

(
2

λs,min

− 1

)
. (5.62)

Case: 3×Nr

In this case, (5.65) reduces to a simple quadratic equation. Solving

this, and simplifying using (5.58) and (6.47), we obtain

γCP =

√
tr2 (A)2 − 4|A|

(
tr(A)− 3λs,maxNr

(Nr−2)|S|

)
− tr2(A)

2
3
(Nr − 2)|A||S|

(5.63)

For the special case Nr = 3, this result further simplifies to

γCP =

√
tr2 (A)2 − 4|A|

(
tr(A)− 9λs,max

|S|

)
− tr2(A)

2
3
|A||S|

. (5.64)

Again we see a dependence on the eigenvalues of the transmit spatial correla-

tion matrix.

Numerical Crossing-Point Results

Fig. 5.6 shows the SNR threshold (5.61) as a function of the angular

spread (AS), for Nt = 2 and different numbers of receive antennas. The corre-

lated MIMO channel is generated assuming a single scatterer cluster around
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the transmitter, with a broadside mean angle of departure (with respect to

the antenna array).

Figure 5.6: Crossing-points for a MIMO(Nr,2) system as a function of the angular
spread (AS) and number of receive antennas (Nr). Single-sided correlated channel
with single cluster and mean angle of departure at 0o (broadside direction).

We see that the SNR threshold varies inversely to the angular spread.

This is due to the fact that increasing the angular spread reduces the level of

spatial correlation (or equivalently, increases the spatial selectivity), in which

case the maximum eigenvalue of the transmit correlation matrix λs,max also

reduces, thereby decreasing γCP consistently with (5.61). The figure also shows

that the SNR threshold becomes very large for AS below 10 degrees, for all

antenna configurations. This indicates that SM transmission is particularly

sensitive to high levels of spatial correlation.
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5.4.3 Capacity Crossing-Points between OSTBC and SM

Comparing the OSTBC capacity bound in (5.39) with the SM bound

in (5.55) we find that there exists a crossing point of the capacity curves

at an SNR threshold γCP, which corresponds to the positive solution to the

polynomial equation

Nt∑
k=1

γk
CP

(
Nr −Nt + 1

Nt

|S|
)k

trk (A) + 1 =

(
γo
Nr

Rc

+ 1

)Rc

(5.65)

where A = diag
(
1/|S11|, . . . , 1/|SNtNt|

)
, trk(·) denotes the kth elementary

symmetric function and Skk corresponds to S with the kth row and column

removed.

To gain further insight, we consider the special case of Nt = 2 and

Nr = 2. By definition tr1 (A) = 2 and tr2 (A) = 1, and it is easily shown that

the solution to (5.65) is given by

γCP =
4

|S|

(
2

|S|
− 1

)
(5.66)

where we assumed Rc = 1 for the Alamouti code. Noting that |S| is a decreas-

ing function of the channel correlation, we see that γCP, defining the relative

performance of OSTBC and SM, varies monotonically with the correlation,

indicating that OSTBC is more resilient to correlation than SM.

Fig. 5.7 shows OSTBC capacity curves based on (5.39), and the SM-ZF

capacity (derived in [151]), in low and high correlation scenarios. As expected,

we see a crossing point between the respective OSTBC and SM curves, which

moves significantly to the right (i.e. by approximately 16 dB) as the spatial
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Figure 5.7: Capacity crossing-points of OSTBC and SM for MIMO 2x2 sys-
tems, as a function of the transmit spatial correlation. The channel is single-
sided correlated and the exponential model is used, with ρtx = 0.1 and
ρtx = 0.9.

correlation increases. This result suggests that practical adaptive switching

strategies (such as the method proposed in Chapter 7) should be designed to

take into account not only the average SNR, but also the spatial correlation

information.
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Chapter 6

BER Analysis of Adaptive MIMO-BICM

Systems

In designs of adaptive MIMO systems, it is required to simulate the

bit error rate (BER) performance of different transmission techniques to char-

acterize optimal criteria to switch between schemes. These simulations may

be very computationally expensive, since the BER performance has to be

evaluated in a variety of propagation scenarios. Moreover, practical adaptive

systems employ combinations of modulation and coding schemes (MCS) to

enable transmissions over the wireless link. Simulating the BER for different

combinations of MCSs and MIMO schemes becomes prohibitive in practical

designs, where the BER has to be evaluated with restrictive targets (i.e., 10−6).

One solution is to analytically compute closed-form BER expressions for bit-

interleaved coded modulation (BICM) MIMO systems. This chapter first pro-

vides an overview on adaptive MIMO-BICM systems and the low-complexity

schemes used in the adaptive algorithm. Then, closed-form BER expressions

are derived for BF, OSTBC and SM transmission techniques.
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6.1 Introduction

This section presents some background on adaptive MIMO-BICM sys-

tems. Then describes the system model and architecture as well as the low-

complexity MIMO schemes.

6.1.1 Background on Adaptive MIMO-BICM Systems

In this chapter we extend the scope of investigation on adaptive MIMO

systems in [152–154] by considering coded modulation, over channels with

correlation between antennas at both the transmitter and receiver. We focus

on maximizing the data rate for a given target error performance. For this

broader, more practical class of systems, we propose a novel adaptive MIMO

transmission algorithm based on deriving closed-form bit error rate (BER)

expressions.

We consider three simple MIMO schemes: statistical beamforming

(SB), orthogonal space-time block codes (OSTBC) and spatial multiplexing

with zero-forcing (ZF) receiver. SB requires only covariance feedback informa-

tion, while OSTBC and ZF are open-loop schemes with low complexity linear

receivers. Our proposal is to adaptively switch between these three schemes

based on the channel conditions. Of course, it is common to adapt MIMO

transmission systems between a set of coding and modulation modes based

on SNR, e.g. as discussed in [127]. The key idea of our algorithm is to also

introduce adaptive switching between SB or OSTBC in high correlation con-

ditions, and spatial multiplexing in low correlation conditions. This switching
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method improves the performance, and requires minimal feedback information

since it relies on only two channel statistics: the average SNR and the spatial

correlation.

An additional important component of our adaptive algorithm is that

the switching criteria is based on closed-form BER expressions, which we de-

rive in this chapter. The only previous adaptive schemes for channels with

both transmit and receive correlation, of which we know, are limited by the

fact that the mode selection criterion is based on empirically-generated lookup

tables constructed from a small set of typical channel scenarios [2,151], or are

based on loose SNR approximations [154]; thus making the switching inaccu-

rate. We note that it may also be possible to get closed-form results for other

more complicated receivers structures, such as the minimum mean-square er-

ror (MMSE) or successive interference cancelation receivers; although this is

beyond the scope of this chapter. In the particular case of the MMSE receiver,

the performance is known to be close to ZF, and hence the switching algorithm

we develop here could be applied directly with a small approximation error.

The coding we consider in this chapter is bit-interleaved coded mod-

ulation (BICM), which is common in practical wireless systems (e.g. IEEE

802.11a WLANs, and proposed for IEEE 802.11n), and is ideally suited to

adaptive transmission. BICM is easily adapted to changing channel conditions

by simply puncturing the mother encoder and changing to a corresponding

modulation format. Recently, BICM schemes have been extended to uncor-

related MIMO scenarios, and been shown to perform favorably with practical
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ZF receivers [155,156].

To design the switching criterion, we derive new closed-form expressions

for the BER of BICM coupled with SB, OSTBC an ZF (hereafter denoted

BICM-SB, BICM-OSTBC and BICM-ZF, respectively) in transmit and re-

ceive spatially-correlated channels. The results are based on the typical BICM

assumption of ideal interleaving. This assumption is valid in channels with suf-

ficient time variation or frequency selectivity. We make use of a saddlepoint

approach, originally proposed in [157, 158] for the single-input single-output

(SISO) BICM case, and derive closed-form expressions for the error proba-

bilities which are tight. The expressions can be used to calculate achievable

throughputs for given combinations of coding and modulation. These results

are used to identify and examine performance tradeoffs for the three MIMO

transmission schemes.

6.1.2 System Model and Architecture

Consider a narrowband MIMO system with Nt and Nr transmit and

receive antennas respectively. Throughout this chapter we assume Nt ≤ Nr, to

facilitate low complexity BICM-ZF transmission (see below). For each channel

use the received signal vector is given by (5.1) in Section 5.1.2. The channel

is decomposed according to the common Kronecker structure [111, 114, 132]

as in (5.2) in Section 5.1.2. We assume that R and S are Hermitian positive-

definite matrices containing unit diagonal entries. Moreover, we assume that

the eigenvector us,max corresponding to the maximum eigenvalue of S is known
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perfectly at the transmitter (this is to facilitate SB, see below). With this

model, the average SNR per receive antenna is Ntγ.

Note that all analytical results presented in this chapter apply equally

to any particular correlation model which can be expressed in the form (5.2).

For the numerical studies we consider the exponential correlation model at the

transmitter and receiver (e.g. as in [114]), given by (2.15) in Section 2.4.2. We

choose this simple exponential correlation model (for the numerical studies) to

illustrate clearly the impact of spatial correlation on the relative performance

of the SB, OSTBC and ZF schemes. These results will be also validated in

more realistic deterministic channel models described in Section 2.4.1.

The MIMO system architecture we analyze is presented in Fig. 6.1. The

encoder, interleaver (assumed ideal), and constellation mapper, form the bit-

interleaved coded modulation (BICM) section of the transmitter. The BICM

system operates according to one of a finite set of modes, with each mode

comprising a particular combination of encoder rate and modulation format.

The encoder rate R is varied by puncturing a mother binary convolutional

encoder. The modulation formats are Gray-labeled 2M−ary PSK or QAM

constellations, denoted A, of unit average energy. Following modulation, the

symbols are mapped to transmit signal vectors x, according to the particular

MIMO transmission scheme, as discussed in the following section.
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Figure 6.1: MIMO-BICM system architecture.

6.1.3 Low Complexity MIMO Transmission Schemes

This section details SB and OSTBC which we will show is suited to

channels with high correlation or low SNR, and a ZF scheme which we show

performs best in uncorrelated channels and high SNR.

Statistical Beamforming

For the SB scheme, a single modulated symbol is transmitted from all

the antennas, with an appropriate complex weighting, during each channel

use. For a modulated symbol a ∈ A, the transmission vector x is formed as

follows

x = us,maxa. (6.1)

The spectral efficiency of BICM-SB, in bits/s/Hz, is therefore given by

SBICM−SB = RM. (6.2)

Orthogonal Space-Time Block Code
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OSTBC transmits parallel streams over ns consecutive symbol periods

and the symbols are encoded across different antennas. The model of the

transmit signal matrix of OSTBC was presented in Section 5.1.3.

Zero-Forcing

For the ZF scheme, Nt modulated symbols are transmitted, one per

antenna, during each channel use. The spectral efficiency of BICM-ZF, in

bits/s/Hz, is therefore given by

SBICM−ZF = NtRM. (6.3)

Clearly, for a given mode (R and M), SBICM−ZF is larger than SBICM−SB by a

factor of Nt.

6.1.4 Low Complexity MIMO-BICM Receivers

Statistical Beamforming

For the SB scheme, maximum ratio combining (MRC) is applied to the

receive signal vector to yield

z = f †y =
√
γ f † (Hus,max a+ n)

=
√
γ ‖f‖2a+ n (6.4)

where f = Hus,max and n = f †n ∼ CN (0, ‖f‖2). The BICM log-likelihood

metrics for each of the bits i (= 1, . . . ,M) corresponding to the modulated

symbol a are calculated from z using

Li = ln

∑
ã∈Ai

1
p (z|ã, f)∑

ã∈Ai
0
p (z|ã, f)

(6.5)
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where

p (z|ã, f) =
1

π‖f‖2
exp

(
−
|z −√

γ ‖f‖2ã|2

‖f‖2

)
(6.6)

and where Ai
0,A

i
1 are the signal subsets within A with ith bit equal to 0

and 1 respectively. These metrics are deinterleaved, and decoded using a

conventional soft-decision Viterbi algorithm.

Orthogonal Space-Time Block Code

For OSTBC transmission with a maximum-ratio combining (MRC) re-

ceiver, we have the following equivalent input-output extension to (5.1) as

in [142]

z =
√
γ‖H‖2

Fx + n (6.7)

where n ∼ CN (0ns×1, ‖H‖2
F Ins).

From (6.7), clearly the kth element of z ∈ Cns×1 corresponds to the

output from a fading AWGN scalar channel, where the input is the kth element

of a. For the kth modulated symbol, ak, the BICM log-likelihood metrics are

then calculated for the corresponding bits i (= 1, . . . ,M) according to [156]

Lk,i = ln

∑
ã∈Ai

1
p (zk|ã,H)∑

ã∈Ai
0
p (zk|ã,H)

(6.8)

where Ai
0 and Ai

1 denote the subsets of the (scalar) transmit constellation A

with ith bit equal to 0 and 1 respectively, zk is the kth element of z, and

p (zk|ã,H) =
1

π‖H‖2
F

exp

(
−
|zk −

√
γ‖H‖2

F ã|2

‖H‖2
F

)
. (6.9)
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These metrics are deinterleaved, and decoded using a soft-decision Viterbi

algorithm.

Zero-Forcing

For the ZF scheme, the initial filtering step at the receiver is

z = Wy =
√
γx + n (6.10)

where W =
(
H†H

)−1
H† and n = Wn ∼ CN

(
0Nt×1,WW†). Clearly, the kth

element of z corresponds to the output from a colored Gaussian noise channel,

where the input is the kth element of x. For the kth modulated symbol, ak, the

BICM log-likelihood metrics are then calculated for the corresponding bits i

(= 1, . . . ,M) according to [155,156]

Lk,i = ln

∑
ã∈Ai

1
p (zk|ã,wk)∑

ã∈Ai
0
p (zk|ã,wk)

(6.11)

where zk is the kth element of z, wk is the kth row vector of W, and

p (zk|ã,wk) =
1

π‖wk‖2
exp

(
−
|zk −

√
γã|2

‖wk‖2

)
. (6.12)

These metrics are deinterleaved, and decoded using a soft-decision Viterbi

algorithm.

6.2 Link-Level Capacity of MIMO-BICM

In this section we calculate and compare the BICM-SB and BICM-ZF

link-level capacities (LLC) in spatially-correlated Rayleigh MIMO channels.
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Assuming uniformly-distributed inputs and ideal interleaving, the LLC is cal-

culated by summing the mutual information (MI) for each equivalent BICM

subchannel (i.e. as in [156,159])1.

6.2.1 Statistical Beamforming (BICM-SB)

Using a technique for the LLC of SISO-BICM from [159], we obtain the

LLC of BICM-SB as

CBICM SB = M −
M∑
i=1

Eu,z,f

[
log2

∑
ã∈A p(z|ã, f)∑
ã∈Ai

u
p(z|ã, f)

]
(6.13)

where u is an equivalent-channel binary input taking values 0 and 1 with equal

probability, independent of z and f . Substituting the conditional p.d.f. (6.6),

and using (6.4), we average over u, and the uniformly-distributed channel

inputs a ∈ Ai
u to obtain

CBICM SB = M − 1

2M

M∑
i=1

1∑
u=0

∑
a∈Ai

u

En,f

[
log2

∑
ã∈A exp

(
− |√γ‖f‖2(a−ã)+n|2

‖f‖2

)
∑

ã∈Ai
u
exp

(
− |√γ‖f‖2(a−ã)+n|2

‖f‖2

)].
(6.14)

In Section 6.4 we present a closed-form expression for the p.d.f. of ‖f‖2. Using

this p.d.f. and the usual Gaussian p.d.f. for n, the expectations in (6.14) can

be efficiently computed using a combination of Gauss-Laguerre and Gauss-

Hermite quadratures, tabulated in [161].

1For general MIMO capacity analysis (Gaussian inputs), see [32,111,132,160].
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6.2.2 Zero-Forcing Receivers (BICM-ZF)

We have previously derived the LLC for BICM-ZF in i.i.d. Rayleigh

channels as [156]

CBICM ZF = mNt −
Nt∑

k=1

M∑
i=1

Eu,zk,wk

[
log2

∑
ã∈A p(zk|ã,wk)∑
ã∈Ai

u
p(zk|ã,wk)

]
(6.15)

where u is distributed as it was in (6.13). We note that this expression applies

equally to spatially-correlated channels, under the assumption of ideal inter-

leaving. Substituting the conditional p.d.f. (6.12) into (6.15), using (6.10), and

averaging over u and a ∈ Ai
u we obtain

CBICM ZF = MNt −
1

2M

Nt∑
k=1

M∑
i=1

1∑
u=0

∑
a∈Ai

u

Enk,wk

[
log2

∑
ã∈A exp

(
− |√γ(a−ã)+nk|2

‖wk‖2

)
∑

ã∈Ai
u
exp

(
− |√γ(a−ã)+nk|2

‖wk‖2

)].
(6.16)

For transmit correlated channels, the p.d.f. of ‖wk‖−2 is known in closed-form

[144], and the expectations in (6.16) can be computed efficiently using Gauss-

Laguerre and Gauss-Hermite quadratures. For channels with both transmit

and receive correlation, such closed-form p.d.f.s are not available, and the

expectations must be evaluated through simulation.

6.2.3 LLC Performance Comparison

Fig. 6.2 compares the LLCs of BICM-SB and BICM-ZF with 2 × 2

antennas, for two correlation scenarios. Each curve is the envelope of the

individual LLC curves for Gray-labeled BPSK, QPSK, 16QAM and 64QAM

modulation formats (for the respective transmission scheme).
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Figure 6.2: BICM LLC envelope for the ZF and SB transmission schemes.
Two MIMO channel scenarios with exponential correlation coefficients ρtx =
0.5, ρrx = 0.5 and ρtx = 0.9, ρrx = 0.1 are considered.

The figure shows that the LLC of each transmission scheme depends

on the channel correlation scenario. In particular, as the transmit correla-

tion increases, SB benefits and ZF degrades. These curves motivate our new

adaptive transmission approach which not only adapts the modulation format

and code rate, but also adapts the transmission scheme (between SB and ZF).

The relative performance of the two schemes clearly depends on both SNR

and channel spatial correlation. For example, in the figure shown, in order

to achieve the maximum LLC for the lower transmit correlation channel, SB

should be used for SNRs below 12 dB, and ZF should be used for higher SNRs.

For the higher transmit correlation channel, the crossing point is at 21 dB.

While these capacity results have motivated the new adaptive approach,

for practical systems (with non capacity-achieving codes) we prefer to evaluate
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the switching points based on achievable BER. Such is the topic of the following

sections. In the numerical studies of Section 7.5.3, the capacity curves of this

section are used as a benchmark of achievable performance.

6.3 General Expressions for the Error Probability

We now derive tight expressions for the BER of BICM-SB, BICM-

OSTBC and BICM-ZF in spatially-correlated Rayleigh MIMO channels. These

results will provide the fundamental tools for establishing the selection crite-

rion for our proposed adaptive MIMO-BICM algorithm in Section 7.5.

Before proceeding, we note that although we are considering binary

convolutional codes with low-complexity Viterbi decoding, the subsequent an-

alytical BER results also apply directly to BICM-SB and BICM-ZF systems

employing more powerful turbo-like codes [157, 158, 162] with iterative decod-

ing (e.g. serial/parallel concatenated codes, and repeat and accumulate codes).

It is only necessary to know the distance spectrum of the code. Moreover, the

analytical procedure could also be adapted to BICM-SB, BICM-OSTBC and

BICM-ZF systems with iterative demodulation (ID) and non-Gray labelings

(i.e. as in the BICM-ID systems considered in [163–165]). However, in these

particular cases, the general BER union-bound approach used in the sequel

is known to yield accurate results only in the error-floor region of the BER

curve (see, for example, [157,158,164]). It is also important to emphasize that

both turbo-like codes and BICM-ID have much higher complexity than the

non-iterative schemes considered in this chapter, making them unsuitable for
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implementation in many practical systems.

6.3.1 BER Union Bound

The BER union bound for rate Rc = kc/nc linear binary convolutional

codes is given by [166]

BER ≤ 1

kc

∞∑
d=dfree

WI(d)f(d, µ,A, γ) (6.17)

where WI(d) is the total input weight of all error events at Hamming distance

d, f(.) is the codeword pairwise error probability (C-PEP), µ is the labeling

map, and dfree is the free Hamming distance. Note that for the codes we

consider the infinite series in (6.17) converges very quickly, and truncation to

as little as 5 terms still yields accurate results.

6.3.2 Exact Expression for the C-PEP

To simplify the C-PEP analysis of both BICM-SB, BICM-OSTBC and

BICM-ZF, we adopt the approach of [159] and force the BICM subchannels2

to behave as binary-input output-symmetric (BIOS) channels by introducing

a random bit-swapping variable u, which gives the well-known C-PEP [166]

f(d, µ,A, γ) = Pr

(
d∑

i=1

Li > 0

)
(6.18)

assuming the all-zero codeword is transmitted, and where Li is the log-likelihood

metric for the ith coded bit. Since the metrics Li are i.i.d. under the assump-

2These are the equivalent channels between the transmitted binary codeword and the
corresponding BICM bit metrics.

130



tion of ideal interleaving, we can evaluate the tail probability (6.18) based on

the moment generating function (m.g.f.)3

ML(s)
∆
= EL [exp (sL)] (6.19)

as

f(d, µ,A, γ) =
1

2πj

∫ c+j∞

c−j∞
ML(s)d ds

s
. (6.20)

Unfortunately in virtually all cases this solution must be evaluated using nu-

merical complex integration techniques, thereby making it unsuitable for use

in practical adaptive systems. In this chapter we use (6.20) for assessing the

accuracy of our efficient C-PEP closed-form approximations.

6.3.3 Saddlepoint Approximation for the C-PEP

Since the C-PEP is the tail probability of a sum of i.i.d. random vari-

ables, a simplified closed-form expression is obtained by applying a saddlepoint

approximation [167, App. 5A] to (6.18). This approximation is more accurate

than the usual Chernoff bound, and is given by

f(d, µ,A, γ) ≈ 1√
2πdK

′′
L(ŝ)ŝ

exp (dKL(ŝ)) =
1√

2πdK
′′
L(ŝ)ŝ

ML(ŝ)d (6.21)

where KL(·) is the cumulant generating function (c.g.f.) of L given by

KL(s) = ln ML(s) (6.22)

3Note that we drop the subscript on L when considering the log likelihood ratio statistics
at a single instant in time.
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and where K
′′

L(ŝ) denotes the second derivative of KL(s), evaluated at the

saddlepoint ŝ, which is the real value of s that minimizes KL (s) (and therefore

also minimizes ML (s)).

We note that the general saddlepoint approximation (6.21) was first

used for the analysis of SISO BICM in AWGN and uncorrelated Rayleigh

fading in [157], and further elaborated upon in [158]. In this chapter we apply

the saddlepoint approximation to the more general correlated MIMO channel,

and use it to derive new closed-form BER expressions.

6.4 Analysis of MIMO-BICM with Statistical Beam-
forming

6.4.1 Moment Generating Function of Log-Likelihood Metric

For BICM-SB transmission, the m.g.f. is easily obtained using (6.5),

(6.6) and (6.19) as

ML(s) = Ez,m,u,f

exp

s ln

∑
ã∈Am

ū
exp

(
− |z−√γ‖f‖2ã|2

‖f‖2

)
∑

ã∈Am
u

exp
(
− |z−√γ‖f‖2ã|2

‖f‖2

)


= Ea,m,u,n,f

∑ã∈Am
ū

exp
(
− |√γ‖f‖2(a−ã)+n|2

‖f‖2

)
∑

ã∈Am
u

exp
(
− |√γ‖f‖2(a−ã)+n|2

‖f‖2

)
s . (6.23)

Averaging over the uniform bit-positions m, bit-swapping values u, and sym-

bols a ∈ Am
u gives

ML(s) =
1

M2M

M∑
m=1

1∑
u=0

∑
a∈Am

u

Im,u,a(s) (6.24)
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where

Im,u,a(s) = En,f

∑ã∈Am
ū

exp
(
− |√γ‖f‖2(a−ã)+n|2

‖f‖2

)
∑

ã∈Am
u

exp
(
− |√γ‖f‖2(a−ã)+n|2

‖f‖2

)
s  . (6.25)

As for the BICM-SB LLC in (6.14), the expectation (6.25) can be evaluated via

numerical integration using Gauss-Laguerre and Gauss-Hermite quadratures.

We now show that at high SNR the expression can be calculated in closed-form.

At high SNR, the ratio in (6.25) is dominated by a single minimum distance

term4 in the numerator and denominator, and by applying the bounding ap-

proach from [158, Eq. (39)] the Dominated Convergence Theorem [168] can be

applied to yield

Im,u,a(s) = En,f

exp
(
− |√γ‖f‖2(a−ã)+n|2

‖f‖2

)
exp

(
− |n|2
‖f‖2

)
s  (6.26)

for s < 1, where ã ∈ Am
ū is the nearest neighbor to a ∈ Am

u . Averaging over

the noise yields

Im,u,a(s) = En,f

[
exp

(
−s|√γ‖f‖2(a− ã) + n|2 + s|n|2

‖f‖2

)]
= En,f

[
exp

(
−sγ‖f‖4|a− ã|2 − 2s<e

(√
γ‖f‖2 (a− ã)n∗

)
‖f‖2

)]
= Ef

[
exp

(
−sγ‖f‖2|a− ã|2 + s2γ‖f‖2|a− ã|2

)
×
∫

1

π
exp

(
−
|n+ s

√
γ‖f‖2(a− ã)|2

‖f‖2

)
dn

]
= E‖f‖2

[
exp

(
−γ‖f‖2|a− ã|2s(1− s)

)]
. (6.27)

4Note that if non-Gray mappings were considered, the multiplicity of nearest neighbors
would need to be considered.
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To evaluate the expectation in (6.27), we use (5.2) and (5.4), and recall that

the distribution of Z in (5.2) is invariant under unitary transformation, to give

‖f‖2 = u†s,maxH
†Hus,max

' u†s,maxUsΛ
1
2
s U†

sH
†
wUrΛrU

†
rHwUsΛ

1
2
s U†

sus,max

' u†s,maxUsΛ
1
2
s H†

wΛrHwΛ
1
2
s U†

sus,max

' λs,max

2
Q (6.28)

where ' denotes equivalence in distribution, λs,max is the maximum eigenvalue

of S, and

Q =
Nr∑
`=1

ε` λr,` (6.29)

where λr,` denotes the `th eigenvalue of R, and the ε`’s are i.i.d. exponentially-

distributed random variables. As such, Q is a central quadratic form. Since

the exponential distribution is a chi-squared distribution with even degrees of

freedom, we use a general result from [140] to give the p.d.f. of Q as

f(Q) =
Nr∑
`=1

g`(Λr)
exp

(
− Q

2λr,`

)
2λr,`

(6.30)

where

g`(Λr) =
Nr∏

j=1,j 6=`

(
λr,`

λr,` − λr,j

)
. (6.31)

Using (6.30) and (6.28), along with the integration identity [141, Eq. 3.381.4],

the expectation in (6.27) is evaluated as

Im,u,a(s) =
Nr∑
`=1

g`(Λr)
(
1 + γ|a− ã|2λs,maxλr,`s(1− s)

)−1
. (6.32)
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PM EM

BPSK {1} {4.0}
QPSK {1} {2.0}
16QAM {3/4, 1/4} {0.4, 1.6}
64QAM {7/12, 1/4, 1/12, 1/12} { 0.0952, 0.3810, 0.8571, 1.5238}

Table 6.1: Breakdown of distance multiplicities between complement BICM
subsets for various QAM/PSK constellations with Gray labelling

Now, substituting (6.32) into (6.24) gives a closed-form expression for

the m.g.f. Unfortunately this expression requires the calculation of M2MNt

terms, Im,u,a(s). We can see from (6.24) however, that these terms only depend

on a through the squared Euclidean distance to its nearest neighbour ã in the

complement subset. We previously showed in [169] that when Gray labeling

PSK/QAM constellations were employed, summations of this form could be

greatly simplified by exploiting the multiplicities of the Euclidean distances.

In particular, in this case we find that (6.24) can be written in the efficient

form

ML(s) =

|PM |∑
i=1

PM,i ÎEM,i
(s) (6.33)

where the sets PM (with cardinality |PM |) and EM are defined in Table 6.1,

with ith element PM,i and EM,i respectively, and where ÎEM,i
(s) is as in (6.32),

but with |a− ã|2 replaced with EM,i.
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6.4.2 Closed-form C-PEP Based on Saddlepoint Approximation

Noting that the the m.g.f. (6.33) is minimized at the saddlepoint ŝ = 1
2
,

we use (6.33) in (6.21) to obtain (after simple but tedius algebra) the saddle-

point approximation to the C-PEP

f(d, µ,A, γ) ≈ 1

2
√
πd

[∑|PM |
i=1 PM,i

∑Nr

`=1 g`(Λr)
(
1 +

γEM,iλs,maxλr,`

4

)−1
]d+ 1

2

√∑|PM |
i=1 PM,i

∑Nr

`=1 g`(Λr)
(
1 +

γEM,iλs,maxλr,`

4

)−2 (
γEM,iλs,maxλr,`

4

)
(6.34)

This expression is easy to compute in practice since |PM | is small, and

all terms are straightforward functions of the eigenvalues of the correlation

matrices, and the SNR.

6.4.3 Simplified C-PEP

Applying the following approximation to the denominator of (6.34),(
γEM,iλs,maxλr,`

4

)
≈
(
γEM,iλs,maxλr,`

4

)
+ 1 (6.35)

we obtain a simplified C-PEP expression given by

f(d, µ,A, γ) ≈ 1

2
√
πd

|PM |∑
i=1

PM,i

Nr∑
`=1

g`(Λr)

(
1 +

γEM,iλs,maxλr,`

4

)−1
d

.

(6.36)

6.4.4 BER Performance Results

Fig. 6.3 compares the preceding analytical BICM-SB BER expressions

with Monte-Carlo simulation results, for a 2 × 2 system with Gray-labeled
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QPSK, 16QAM and 64QAM constellations. Results are presented for the op-

timal 64-state 1/2 rate binary convolutional code with dfree = 10, and with

ideal interleaving. We consider the exponential correlation model with corre-

lation coefficients ρtx = ρrx = 0.5. The ‘saddlepoint’ curves were obtained by

substituting the C-PEP expression (6.34) into (6.17). Note that, as expected,

they are within 0.2 dB of the simulated curves for low to moderate BERs

since the union bound is known to be tight for convolutional codes for SNRs

above the cut-off rate. The ‘saddlepoint (approx)’ curves were obtained from

(6.36), and are within 1 dB of the simulated curves in all cases. For compar-

ison, results are also presented based on the exact C-PEP expression (6.20).

To evaluate this expression, the m.g.f. (6.33) was used in (6.20), and the com-

plex integration was evaluated numerically using Gauss-Chebyshev quadrature

(GCQ) rules [170]. We clearly see that the simplified closed-form saddlepoint

approximation suffers negligible loss compared with (6.20).

6.5 Analysis of MIMO-BICM with OSTBC

6.5.1 Moment Generating Function of Log-Likelihood Metric

For OSTBC transmission, the m.g.f. is easily obtained using (6.11),
(6.12), and (6.19) as

ML(s) = EV


∑ã∈Am

ū
exp

(
− |√γ‖H‖2F (ak−ã)+nk|

2

‖H‖2F

)
∑

ã∈Am
u

exp
(
− |√γ‖H‖2F (ak−ã)+nk|2

‖H‖2F

)
s
 (6.37)

where, for notational convenience, we have grouped the expectation variables

into the vector V = (ak,m, u, k,H, nk), where u is a uniform binary random

variable.
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Figure 6.3: Simulated and analytical BER for 2 × 2 BICM-SB with a 1
2

rate
code, and for various modulation schemes. An exponential correlation model
is used, with correlation coefficient 0.5 at both the transmitter and receiver.

In general, this equation does not admit a closed-form solution. At high

SNR, however, closed-form solutions do exist and these provide an approxima-

tion for all SNRs. Following the general approach in [3, 157] we average over

the uniform bit-positions m, bit-swapping values u, and symbols ak ∈ Am
u , and

apply the Dominated Convergence Theorem to obtain

ML(s) =

|PM |∑
i=1

PM,i IEM,i
(s) (6.38)

where the sets PM (with cardinality |PM |) and EM are defined in Table 6.1,

with ith element PM,i and EM,i respectively, and

IEM,i
(s) = En,H


exp

(
− |√γ‖H‖2F

√
EM,i+n|2

‖H‖2F

)
exp

(
− |n|2
‖H‖2F

)


s 
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where n ∼ CN(0, ‖H‖2
F ). Averaging over n, and using (5.33) gives

IEM,i
(s) = Eη

[
exp

(
−γ η EM,is(1− s)

2

)]
. (6.39)

Finally, we use (5.35) to obtain

IEM,i
(s) =

r∑
`=1

r∏
j=1,j 6=`

(
λq,`

λq,` − λq,j

)
1

(1 + EM,iλq,`s(1− s))
. (6.40)

6.5.2 Closed-form C-PEP Based on Saddlepoint Approximation

Noting that the m.g.f. (6.45) is minimized at the saddlepoint ŝ = 1
2
,

and using (6.40) and (6.45) in (6.21), we obtain the saddlepoint approximation

to the C-PEP given by (6.41).

f(d, µ,A, γ) ≈ 1

2
√
πd

[∑|PM |
i=1 PM,i

∑r
`=1

(
1 +

γEM,iλq,`

4

)−1∏r
j=1,j 6=`

(
λq,`

λq,`−λq,j

)]d+ 1
2

√∑|PM |
i=1 PM,i

∑r
`=1

(
1 +

γEM,iλq,`

4

)−2 (
γEM,iλq,`

4

)∏r
j=1,j 6=`

(
λq,`

λq,`−λq,j

)
(6.41)

6.5.3 Simplified C-PEP

Applying the following approximation to the denominator of (6.41)(
γEM,iλq,`

4

)
≈
(
γEM,iλq,`

4

)
+ 1 (6.42)

we obtain a simplified C-PEP expression given by (6.43).
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f(d, µ,A, γ) ≈ 1

2
√
πd

|PM |∑
i=1

PM,i

r∑
`=1

(
1 +

γEM,iλq,`

4

)−1 r∏
j=1,j 6=`

(
λq,`

λq,` − λq,j

)d

(6.43)

6.5.4 BER Performance Results

Fig. 6.4 compares the preceding analytical BICM-OSTBC BER ex-

pressions with Monte-Carlo simulation results, for a 2× 2 system with various

Gray-labeled constellations. Results are presented for the optimal 64-state 1/2

rate binary convolutional code with dfree = 10. The ‘saddlepoint’ curves were

obtained from the C-PEP expression (6.41), and are clearly tight for low to

moderate BERs. The ‘saddlepoint (approx)’ curves were obtained from (6.43),

and are within 1 dB of the simulated curves in all cases.

6.6 Analysis of MIMO-BICM with Zero-Forcing Re-
ceivers

6.6.1 Moment Generating Function of Log-Likelihood Metric

For BICM-ZF transmission, the m.g.f. is easily obtained using (6.11),

(6.12), and (6.19) as

ML(s) = Ez,m,u,k,wk

exp

s ln

∑
ã∈Am

ū
exp

(
− |z−√γã|2

‖wk‖2

)
∑

ã∈Am
u

exp
(
− |z−√γã|2

‖wk‖2

)
 . (6.44)

In [169] we presented a closed-form high SNR solution to (6.44) given by

ML(s) =
1

Nt

Nt∑
k=1

|PM |∑
i=1

PM,i Ĩk,EM,i
(s) (6.45)
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Figure 6.4: Simulated and analytical BER of 2× 2 BICM-OSTBC employing
the optimal 1

2
rate code (dfree = 10). The exponential model is used, with

ρtx = 0.5 and ρrx = 0.1.

where

Ĩk,EM,i
(s) ≈

∣∣∣∣∣INr +
γEM,is(1− s)Λr

[S−1]k,k

∣∣∣∣∣
−1

trNt−1(Λr)

trNt−1

(
Λr

[
INr +

γEM,is(1−s)Λr

[S−1]k,k

]−1
)

(6.46)

where [·]k,k denotes the kth diagonal element, and tr`(·) is the `th elementary

symmetric function (e.s.f.) defined as [146,171]

tr`(X) =
∑
{α}

∏̀
i=1

λx,αi
=
∑
{α}

∣∣Xα
α

∣∣ (6.47)

for arbitrary Hermitian positive-definite X ∈ Cn×n. In (6.47), the sum is over

all ordered α = {α1, . . . , α`} ⊆ {1, . . . , n}, λx,i denotes the ith eigenvalue of X,

and Xα
α is the `× ` principle submatrix of X, formed by taking only the rows

and columns indexed by α.

141



6.6.2 Closed-form C-PEP Based on Saddlepoint Approximation

The numerator of the saddlepoint approximation (6.21) for BICM-ZF

is obtained by evaluating (6.45) and (6.46) at the saddlepoint ŝ, which is easily

found to be 1
2
. To evaluate the denominator of (6.21) we require K

′′

L(ŝ). To

do this, we start by using (6.22) and (6.45) to write

K
′′

L(ŝ) =
M

′′

L(ŝ)

ML(ŝ)
−
(

M
′

L(ŝ)

ML(ŝ)

)2

(6.48)

where

M
′

L(ŝ) =
1

Nt

Nt∑
k=1

|PM |∑
i=1

PM,i Ĩ
′

k,EM,i
(ŝ) (6.49)

M
′′

L(ŝ) =
1

Nt

Nt∑
k=1

|PM |∑
i=1

PM,i Ĩ
′′

k,EM,i
(ŝ). (6.50)

We must now evaluate Ĩ
′
(ŝ) and Ĩ

′′
(ŝ). Unfortunately, it is very difficult to

evaluate these derivatives based directly on the form of Ĩ(s) given in (6.46).

In the Appendix we perform significant algebraic manipulations to calculate

these derivatives as follows

Ĩ
′

k,EM,i
(ŝ) = 0

Ĩ
′′

k,EM,i
(ŝ) = 8Ĩk,EM,i

(ŝ)2

(
Nr−Nt+1∑

`=1

` C`(Λr)

(
γEM,i

4 [S−1]kk

)`
)

(6.51)

where C`(Λr), for ` = 1, . . . , Nr − Nt + 1, are auxiliary constants, defined in

(B.9). We now substitute (6.51) into (6.49) and (6.50), simplify the resulting

expression, and then use (6.48) and (6.21) to give the final closed-form C-PEP
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saddlepoint approximation as follows

f(d, µ,A, γ) ≈ 1

2Nd
t

√
πd

(∑Nt

k=1

∑|PM |
i=1 PM,i

(
1 +

∑Nr−Nt+1
`=1

(
γEM,i

4[S−1]kk

)`

C`(Λr)

)−1
)d+ 1

2

√√√√√∑Nt

k=1

∑|PM |
i=1 PM,i

∑Nr−Nt+1
`=1 `

(
γEM,i

4[S−1]kk

)`

C`(Λr)(
1+
∑Nr−Nt+1

`=1

(
γEM,i

4[S−1]kk

)`

C`(Λr)

)2

.

(6.52)

Special Case: Nt = 2, Nr = 2

For 2 × 2 systems, (6.52) can be reduced to a simple closed-form ex-

pression5. We first note that [146]

[
S−1
]
kk

=
|Skk|
|S|

(6.53)

where Skk corresponds to S with the kth row and column removed, and recall

that the spatial correlation matrices have unity diagonal entries, such that for

2× 2 systems

[
S−1
]
kk

=
1

|S|
(6.54)

for k = 1, 2. Secondly, we note that (6.52) contains only a single auxiliary

constant, C1(Λr), in the 2× 2 case, in which case (B.9) reduces to

C1(Λr) = 2|R|. (6.55)

5Although not shown, simplified expressions are also possible for the more general case
Nr = Nt = n, and for systems with Nt = 2 and Nr ≥ 2.
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Substituting (6.54) and (6.55) into (6.52) and simplifying yields

f(d, µ,A, γ) ≈ 1

2
√
πd

(∑|PM |
i=1 PM,i

(
1 +

γEM,i|R||S|
4

)−1
)d+ 1

2

√√√√∑|PM |
i=1 PM,i

γEM,i|R||S|
4(

1+
γEM,i|R||S|

4

)2

. (6.56)

6.6.3 Simplified C-PEP at High SNR

In the high SNR regime, we note that the summations over ` in (6.52)

are dominated by the terms corresponding to ` = Nr −Nt + 1. We also note

from (B.9) that

CNr−Nt+1(Λr) =

(
Nr

Nt − 1

)
|R|. (6.57)

With these observations, after basic algebra it is easily shown that (6.52)

reduces to

f(d, µ,A, γ) ≈
(γ

4

)−(Nr−Nt+1)d trNt−1 (Λr)
d

2Nd
t

√
πd
(

Nr

Nt−1

)d|R|d (6.58)

×

 Nt∑
k=1

|PM |∑
i=1

PM,i

(
EM,i

[S−1]kk

)−(Nr−Nt+1)
d

(6.59)

which is clearly much simpler than (6.52).

Special Case: Nt = 2, Nr = 2

In this case, (6.59) reduces to the extremely simple expression

f(d, µ,A, γ) ≈ 1

2
√
πd

γ|R||S|
4

|PM |∑
i=1

PM,i

EM,i

−1−d

. (6.60)
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Figure 6.5: Simulated and analytical BER 2× 2 BICM-ZF employing a 1
2

rate
code, and for various modulation schemes. An exponential correlation model
is used, with correlation coefficient 0.5 at both the transmitter and receiver.

6.6.4 BER Performance Results

Fig. 6.5 compares the preceding analytical BICM-ZF BER expressions

with Monte-Carlo simulation results, for a 2 × 2 system with Gray-labeled

QPSK, 16QAM and 64QAM constellations. The same system and channel

parameters are assumed as in Section 6.4.4. The ‘saddlepoint’ curves were

obtained by substituting the C-PEP expression (6.56) into (6.17), and are

clearly tight for low to moderate BERs. The ‘saddlepoint (high SNR)’ curves

were obtained from (6.60). We see that these curves tighten as the BER is

reduced, and are within 1 dB of the simulated curves for BERs below 10−6. For

comparison, results are also presented based on the exact C-PEP expression

(6.20), which are obtained using the m.g.f. (6.45), and GCQ rules for evaluating

the complex integration in (6.20).
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Chapter 7

Practical Adaptive MIMO Algorithms

One way to enhance the spectral efficiency of wireless communication

systems is to adapt the transmission rate to the changing channel conditions.

Adaptive transmission techniques can be designed to switch between differ-

ent combinations of modulation/coding schemes or transmission strategies.

Adaptive techniques have been proposed in the literature to switch between

different MIMO schemes based on the instantaneous channel knowledge or

relying on time/frequency selectivity indicators. This chapter proposes an

adaptive method based on channel statistics, rather than instantaneous chan-

nel knowledge, to avoid feedback overhead. This method exploits the spatial

selectivity inherent in the channel to switch between different MIMO schemes,

as a means to improve system performance.

7.1 Introduction

MIMO technology exploits the spatial components of the wireless chan-

nel to provide high data rates, through multiplexing, or better coverage, through

diversity schemes. Though there are fundamental tradeoffs between diversity

and multiplexing, both can be achieved simultaneously to different degrees
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in fading channels [125]. In practical systems, one promising solution to in-

crease throughput is link adaptation [127]. The conventional link adaptation

is enabled by switching between different combinations of modulation/coding

rates, by tracking the changing channel conditions, as a means to increase

spectral efficiency. Additionally, switching can be enabled between diversity

or multiplexing MIMO schemes to provide throughput or coverage depending

on the channel quality.

This chapter presents a novel system architecture for adaptive MIMO

transmissions and practical solutions to enable adaptation, based on the chan-

nel quality in the time, frequency and space domains. Four MIMO transmis-

sion schemes are considered: statistical beamforming, diversity, hybrid and

multiplexing. Diversity schemes are employed to increase link robustness, re-

sulting in better coverage. Hybrid techniques achieve higher data rates and

provide good diversity advantage by using both diversity and multiplexing

schemes. Multiplexing schemes are used to enhance spectral efficiency, when

the channel is characterized by good quality and large number of degrees of

freedom. We combine adaptive MIMO switching methods with conventional

adaptive modulation/coding techniques by employing a set of practical trans-

mission modes, optimally defined to reduce the amount of control information.

To make our discussion concrete, we present system specifications and perfor-

mance results in the context of the IEEE 802.16e standard for future wireless

metropolitan area networks (WMANs) supporting MIMO technology [1].
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7.2 Fundamentals of Adaptive MIMO Systems

The key idea of adaptive MIMO transmission methods is to switch

between different signaling techniques in response to changing conditions of

the propagation channel, resulting in enhanced system performance. We begin

by describing the physical characteristics of wireless channels to gain insights

on the fundamental criteria to design adaptive MIMO systems.

7.2.1 MIMO Wireless Channels

The signal measured at the receiver of typical wireless communication

systems consists of multiple copies of the same transmit signal, produced by

different paths in the propagation environment. As a result of the multi-paths,

different wavefronts impinge on the receiving antenna with uncorrelated phases

and add up constructively or destructively, yielding fluctuations (i.e., peaks or

fades) of the signal strength over time, or time selectivity. The rate of the

temporal variations of the signal is proportional to the Doppler spread of the

channel, determined by the speed of the transmitter/receiver or the moving

scattering objects in the propagation environment. Fig. 7.1 shows the temporal

variation of the signal power (h11) for users moving at the speed of 80 Km/h.

In wide band transmissions, the relative delay of different propagation

paths may be greater than the symbol period, resulting in channel fluctuation

in the frequency domain. This fading effect is known as frequency selectivity

and the rate of variation of the channel gain in frequency is a function of
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Figure 7.1: Signal power measured at two different antennas of a MIMO array,
with and without channel spatial correlation. The temporal channel fading is
due to Doppler effects.

the delay spread of the multi-paths. The delay spread varies depending on

the propagation environment such as indoor versus outdoor, or macro- versus

micro-cell scenarios.

When the transmitter or receiver is equipped with multiple antennas,

the signals received at different elements of the arrays may be fading indepen-

dently, and the channel is characterized by its spatial selectivity. The spatial

selectivity depends both on the physical characteristics of the channel (i.e.,

spatial distribution of the impinging wavefronts) and array properties (i.e.,

antenna spacing, cross-polarization, antenna radiation patterns). The spatial

distribution of the multi-paths determines the power angle spectrum of the

channel, characterized in part by the angle spread or variance of the angular

spectrum. The larger the angle spread the higher the probability that multi-
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ple wavefronts add up with different phases at different elements of the array,

producing low correlated signals. Another channel effect that has impact on

the spatial selectivity is the line-of-sight (LOS). When the LOS component is

dominant, the signals measured at different antennas are equally strong over

time, resulting in reduced number of degrees of freedom in the spatial domain.

Fig. 7.2 shows the power angle/delay profile of typical outdoor channel

environments. The wavefronts impinge on the antenna array from different

angles of arrival (ranging between −60o and 60o with respect to the broadside

direction of the uniform linear array) and with different delays. The imping-

ing rays are clustered around few angles and delays, and each cluster identifies

the energy coming from one specific scattering object in the propagation envi-

ronment. In more general scenarios, the higher the number and angle spread

of the clusters the lower the channel spatial correlation. Fig. 7.1 shows the

effect of the spatial correlation on the signal power measured at two different

antennas of the array. In presence of low spatial correlation (i.e., large an-

tenna spacing) the received signals h11 and h21 fade independently, resulting

in higher spatial diversity.

The channel time, frequency and spatial selectivity described above can

be exploited in practical systems to improve link performance via adaptive

MIMO techniques. Adaptive MIMO systems switch between robust or high

data-rate signalling schemes (consisting of different combinations of modua-

tion/coding and MIMO schemes) to combat signal fading and enhance system

throughput.
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Figure 7.2: Power angle/delay profile of typical spatially correlated channel
environments.

7.2.2 Modulation and Coding Schemes

Multiple modulation schemes and forward error correction (FEC) codes

are defined in standards wireless communication systems to enable link adapta-

tion. The current wireless standards employing MIMO technology (i.e., IEEE

802.11n, IEEE 802.16e, and 3GPP) define different sets of modulation orders

and coding rates that are generally combined in predefined modulation/coding

schemes (MCSs).

As an example, the IEEE 802.16e standard defines three modulation

schemes: QPSK, 16QAM and 64QAM [1]. Additionally, various FEC coding

techniques are possible, such as convolutional code (CC), convolutional turbo

code (CTC), and low density parity check (LDPC) code. A few coding rates

are considered: 1/2, 2/3, 3/4, and 5/6 (the rate 5/6 code is used only for

CTC). Moreover, the standard proposes look-up tables with predefined MCSs
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reported in Table 7.1. In the standard, mode 2 is not defined for CC, whereas

mode 5 is not defined for CC and CTC.

MCS ID Modulation Code Rate
1 QPSK 1/2
2 QPSK 2/3
3 QPSK 3/4
4 16-QAM 1/2
5 16-QAM 2/3
6 16-QAM 3/4
7 64-QAM 2/3
8 64-QAM 3/4

Table 7.1: Modulation/coding schemes (MCSs) as in the IEEE 802.16e stan-
dard [1].

7.2.3 MIMO Schemes

We consider three open-loop MIMO transmission techniques defined

in the IEEE 802.16e standard: Matrix A, exploiting only diversity; Matrix

B, combining diversity and spatial multiplexing; Matrix C, employing only

spatial multiplexing. We consider the practical case of four transmit antennas.

Hereafter, we briefly review these schemes and outline their properties.

Matrix A (Diversity) − Space-time block codes (STBCs) efficiently

exploit transmit diversity to combat channel fading while keeping low decoding

complexity. A number of STBCs for four transmit antenna systems have

been proposed thus far. A rate 3/4, full-diversity code was presented in [36],

while [172] proposed a rate 1 quasi-orthogonal STBC not yielding full diversity.

152



There are several examples of space-time codes that achieve full diversity and

rate 1.

Matrix B (Hybrid) − This scheme combines diversity and spatial multi-

plexing by encoding the transmit signal across four antennas [38]. Two Alam-

outi schemes are run in parallel over two different sets of antennas, enabling

rate 2 transmissions. To decode the data, zero forcing (ZF), minimum mean

square error (MMSE), or maximum likelihood (ML) receivers can be employed.

Matrix C (Spatial multiplexing) − Spatial multiplexing systems trans-

mit multiple parallel data streams to enhance spectral efficiency. The V-

BLAST architecture was proposed in [173] to achieve high spectral efficiency

over wireless channels characterized by rich scattering. The receive streams

can be decoded through linear (i.e., ZF or MMSE) or non-linear receivers. In

general, non-linear receivers yield better error rate performance, at the cost

of higher computational complexity. Typical examples of non-linear receivers

are successive interference cancellation (SIC) and maximum likelihood (ML).

7.2.4 Definition of the MIMO Transmission Modes

Adaptive MIMO architectures utilize different combinations of MCSs

and MIMO schemes to enable transmissions over the wireless link. For systems

employing the eight MCSs in Table 7.1 and the three MIMO schemes described

above, it is possible to define the set of 24 transmission modes reported in Table

7.2. These modes are ordered by increasing values of peak spectral efficiency.

Some of these modes provide same throughput for different SNR requirements
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and may be discarded to reduce feedback overhead as described in the following

section.

Mode ID MCS ID MIMO Scheme Peak SE [bps/Hz]
1 1 Matrix A 1
2 2 Matrix A 1.3
3 3 Matrix A 1.5
4 4 Matrix A 2
5 1 Matrix B 2
6 5 Matrix A 2.7
7 2 Matrix B 2.7
8 6 Matrix A 3
9 3 Matrix B 3
10 7 Matrix A 4
11 4 Matrix B 4
12 1 Matrix C 4
13 8 Matrix A 4.5
14 5 Matrix B 5.3
15 2 Matrix C 5.3
16 6 Matrix B 6
17 3 Matrix C 6
18 7 Matrix B 8
19 4 Matrix C 8
20 8 Matrix B 9
21 5 Matrix C 10.7
22 6 Matrix C 12
23 7 Matrix C 16
24 8 Matrix C 18

Table 7.2: MIMO transmission modes and corresponding values of spectral
efficiency (SE).
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7.3 Adaptive MIMO Transmission Techniques

A simplified framework for adaptive MIMO transmission is depicted in

Fig. 7.3. The general adaptation mechanism can be summarized as follows:

the receiver estimates the channel quality information (CQI) and sends it back

to the transmitter; the transmitter processes the CQI and selects the optimal

transmission mode (i.e., combination of MCS and MIMO scheme); the receiver

is informed of the new selected mode via low-rate control channel and adap-

tively switches between different receivers, depending on the selected mode.

Alternatively, the receiver may estimate the optimal transmission mode based

on the CQI and send it back to the transmitter. One of the design challenges

of adaptive MIMO architectures is to define efficient adaptation modules that

use minimum amount of feedback information, without sacrificing much the

systems performance. Hereafter, we present different adaptive methods de-

signed to enhance throughput or produce diversity gain, and discuss their

performance results.

7.3.1 Throughput-Based Adaptive Methods

One common technique employed in broadband wireless systems to

achieve high throughput in fading channels is adaptive modulation and coding

(AMC). The key idea of AMC is to jointly adapt the modulation order and

coding rate to the changing channel conditions, for fixed power constraint.

AMC is conceived to enhance spectral efficiency while satisfying a predefined

target error rate performance. In practice, AMC techniques utilize robust
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Figure 7.3: Block diagram of adaptive MIMO communication systems.

MCSs when the channel experiences deep-fades, and switch to higher order

MCSs as the channel quality improves. In MIMO systems, the spatial com-

ponents of the channel can be exploited via switching between different trans-

mission schemes. A general criterion is to employ robust diversity schemes for

channels with high spatial correlation, whereas transmit parallel streams via

multiplexing in spatially selective channels to enhance throughput.

To gain intuition on this throughput-based adaptive mechanism, we

consider three practical channel scenarios in the context of WMANs. The first

scenario is characterized by one strong line-of-sight (LOS) component and no

scattering. Since the channel has only one dominant spatial component, the
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Channel scenario Low SNR Medium SNR High SNR

LOS, High CSC Matrix A Matrix A Matrix B

LOS, Low CSC Matrix A Matrix A Matrix B

NLOS, High CSC Matrix A Matrix B Matrix C

NLOS, Low CSC Matrix A Matrix B Matrix C

Table 7.3: Selected MIMO transmission schemes in different channel scenarios
and SNR conditions. Each propagation scenario is characterized by given
channel spatial correlation (CSC) and line-of-sight (LOS) component. The
following SNR regions are considered: Low SNR (< 15 dB), Medium SNR
(' 20 dB) and High SNR (> 25 dB).

user would be starved of diversity and robust schemes (i.e., Matrix A) would

be selected by the adaptive algorithm. The second channel scenario is poor

scattering environment (i.e., non-LOS and low angular spread), in which only

few degrees of freedom are available to transmit parallel streams over the

wireless link. In this case, the user would require hybrid schemes (i.e., Matrix

B) to enhance throughput, while maintaining good error rate performance.

The third channel scenario is a rich scattering environment (i.e., high angular

spread), for which adaptive MIMO algorithms would switch to multiplexing

transmissions (i.e., Matrix C) to increase spectral efficiency.

As for conventional AMC schemes, the choice of the optimal MIMO

transmission scheme depends also on the signal-to-noise ratio (SNR). For ex-

ample, users at the edge of the cell would be served with diversity schemes

as opposed to users close to the access point for which multiplexing schemes

would be preferable. Table 7.3 summarizes the MIMO schemes to be used in

different channel scenarios and SNR conditions.
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In practical adaptive switching systems, MIMO schemes are used in

combination with MCSs, to enable transmissions over the wireless link. In

Table 7.2 we listed the set of 24 available MIMO transmission modes for 4× 4

systems. In practice it is desirable to reduce the number of modes to keep the

number of control bits to a minimum. One solution is to discard modes that

provide the same throughput for worse error rate performance. For example,

Fig. 7.4 shows that mode 15 in Table 7.2 yields the same spectral efficiency as

mode 14 for higher SNR requirement (due to worse BER). Then, the number

of modes in Table 7.2 would be reduced down to sixteen, such that the control

information can be encoded over four bits. In systems with low-rate control

channels, it is possible to further reduce the number of modes down to eight

as depicted in Fig. 7.4, such that only three bits would be required for the

control messages.

Given the set of MIMO transmission modes, the challenge now is to

design methods to switch between modes depending on the channel conditions.

The general criterion of throughput-based adaptive algorithms is to select

the mode that yields the highest throughput while satisfying a predefined

target error rate. This adaptive method requires knowledge of the error rate

performance of each mode, which is also a function of the channel quality in the

time, frequency and space domains. For example, the average BER of spatial

multiplexing modes (i.e., modes 12, 15, 17, 19, 21-24 in Table 7.2) is much

higher in spatially correlated channels than spatially selective channels. One

way to estimate the error performance of different modes is to express their
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Figure 7.4: Spectral efficiency of different MIMO modes in Table 7.2 (defined
as combinations of MCSs and MIMO schemes) for practical 4 × 4 MIMO
systems.

BER in closed-form as a function of the channel parameters for bit-interleaved

coded modulation (BICM) systems, as proposed in [174]. Unfortunately, these

closed-form expressions are not available for all kind of channels (i.e., with

LOS) and MIMO transceivers.

An alternative method is to empirically pre-compute the error perfor-

mance of the transmission modes for a set of “typical” propagation scenarios

or link-quality regions. The link quality regions are defined by quantized lev-

els of time/frequency/space correlation and SNR values. Then, the optimal

SNR switching thresholds, corresponding to the predefined target error rate,

are stored for different modes in look-up tables (LUTs). A general method

to generate the LUTs was described in [127] by accounting for the time and

frequency selectivity of the channel. For spatially selective channels, the LUT
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can be constructed based on quantized spatial correlation scenarios as reported

in Table 7.3.

In practical adaptive MIMO systems, the receiver first calculates the

link-quality metrics, consisting of average SNR and time/frequency/space se-

lectivity indicators [2, 127]. These metrics are then input into the LUT, that

maps the link-quality metrics into a link-quality region. Then, the average

SNR is compared against the available SNR thresholds of the selected chan-

nel scenario to choose the optimal transmission mode, providing the highest

throughput for the predefined target error rate. The mode-selection infor-

mation is then conveyed to the transmitter via a reliable low-rate feedback

channel. This adaptive mechanism can be carried out on a frame-by-frame

basis, by tracking the instantaneous channel quality. Alternatively, long-term

adaptation can be employed to reduce the amount of control information, re-

sulting in lower throughput performance.

7.3.2 Diversity-Based Adaptive Methods

The goal of diversity-based adaptive methods is to improve the error

rate performance of wireless systems, resulting in higher robustness to fading

and increased coverage. Diversity-based methods are enabled by switching

between different MIMO modes to reduce error rate for fixed data rate trans-

missions. To achieve the same data rate with different transmission modes,

different MCSs are employed for the three MIMO schemes described above.

For example, in Table 7.2 diversity-based methods can be applied to the fol-
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lowing sets of modes characterized by the same values of peak spectral effi-

ciency: {4, 5}, {6, 7}, {8, 9}, {10, 11, 12}, {14, 15}, {16, 17} and {18, 19}. As

for throughput-based methods, the adaptation can be carried out at fast or

slow rates.

One solution for instantaneous diversity-based adaptations was pro-

posed in [152, 175]. In [152] an algorithm based on the minimum Euclidean

distance was designed to switch between diversity and multiplexing schemes

for 2×2 MIMO systems. Similar method was presented in [175] for 4×4 MIMO

systems, enabling switching between Matrix A, B and C. These methods, how-

ever, are based on theoretical bounds, yielding performance loss especially for

large number of transmit antennas. Moreover, the computational complex-

ity at the receiver is high, since the minimum Euclidean distance has to be

calculated on a frame-by-frame basis.

Alternatively, a stochastic approach can be employed as in [175]. In

this case, the error rate performance is pre-computed for different transmis-

sion modes and the optimal SNR switching thresholds are stored in LUTs for

different propagation conditions, similarly to the throughput-based method.

Then, the receiver estimates the channel quality and selects the mode yielding

the lowest BER performance for a fixed error rate. As case-study, we consider

the following three MIMO modes without FEC coding for simplicity: Mode

A, with 256QAM and Matrix A; Mode B, with 16QAM and Matrix B; Mode

C with 4QAM and Matrix C. All three modes are characterized by the same

peak spectral efficiency value of 8 bps/Hz.
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7.3.3 Joint Diversity/Throughput-Based Adaptive Methods

We showed that adaptive MIMO transmission methods can be designed

either to increase throughput or provide diversity gains. For both these ap-

proaches we selected only a subset of modes from Table 7.2 to reduce the

number of bits used for control information. Alternatively, it is possible to

employ the whole set of modes in Table 7.2 in a joint diversity/throughput-

based adaptive algorithm. In this case, the throughput-based method would

be employed to enhance spectral efficiency for predefined target error rate,

by switching to modes with higher data rates depending on the estimated

link-quality region. Moreover, within each link-quality region, the joint adap-

tive algorithm switches between modes with same rate but different error rate

performance to yield additional diversity gains, resulting in higher spectral

efficiency.

7.4 Adaptation Based on Lookup Tables

In the preceding section, we demonstrated significant theoretical capac-

ity gains offered by the proposed low complexity adaptive MIMO approach,

and also identified the important factors from a switching point of view. We

now propose a novel algorithm for switching between the low complexity trans-

mission schemes in a practical wireless communication system. The goal of our

algorithm is to maximize the system spectral efficiency for a predefined target

bit error rate (BER).
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7.4.1 MIMO Transmission Modes

Our adaptive switching algorithm operates according to a set of modes,

with each mode comprising a particular low complexity MIMO transmission

technique and a modulation/coding scheme (MCS). The MIMO transmission

schemes we consider include statistical BF, D-STTD with MMSE receivers,

and SM with MMSE receivers. We consider the eight MCS combinations de-

fined by the IEEE 802.11a standard [176]. The 3 MIMO transmission schemes

and the 8 MCS combinations yield a total of 24 different transmission modes,

from which we select a subset of 12 (including a no transmission mode, for

cases where the target error rate is not satisfied by any of the other selected

modes).

7.4.2 Link-quality Regions and Metrics

Motivated by the results of Section 5.4, our proposed practical mode

selection (or switching) algorithm is based on average SNR and channel cor-

relation (eigenvalue) parameters. Unfortunately, defining switching criterion

(i.e. a set of SNR switching thresholds, see below) for every channel corre-

lation scenario is an infeasible solution. As such, our practical approach is

to define a set of “typical” channel scenarios, and to pre-compute the error

rate performance of the transmission modes for each scenario. The typical

channel scenarios we consider are detailed in Table 7.4, with parameters K

and Nc corresponding to the Rician K-factor in (2.5) and the number of scat-

terer clusters, respectively. These were selected based on the IEEE 802.11n
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Scenario Channel Type Spatial Parameters Dλ

1 NLOS, High AS K = −∞ dB, AS ∈ [28o, 55o], Nc = 6 [1,5.5)
2 NLOS, Low AS K = −∞ dB, AS ∈ [22.4o, 24.6o], Nc = 2 [5.5,25.8)
3 LOS, Low K K = 2 dB, AS ∈ [22.4o, 24.6o], Nc = 2 [25.8,85.8)
4 LOS, High K K = 6 dB, AS= 30o, Nc = 1 [85.8,+ inf)

Table 7.4: Typical channel scenarios used by our practical adaptive switching
algorithm and corresponding values of the link-quality metric (Dλ).

models [43], and correspond to channels with widely varying degrees of spatial

selectivity. For more details, see [2].

For each typical channel scenario we associate a corresponding set of

SNR thresholds, which together define the link-quality regions used for mode

selection. To predict the link-quality region for a given transmission we employ

two link-quality metrics : the average SNR, and the relative condition number

(Dλ) of the spatial correlation matrices. The relative condition number is a

function of the eigenvalues of the spatial correlation matrices, as discussed

in [2], and is an indicator of the channel spatial-selectivity.

7.4.3 Generating the Look-up Table

The mode selection information, corresponding to the set of link quality

regions, is stored in a look-up table (LUT). To generate the LUT, we simulate

the error-rate performance of the 24 transmission modes in the 4 typical chan-

nels scenarios, and in each case determine the SNR thresholds corresponding

to a pre-defined target error rate. For each channel scenario, we then select a

subset of the 12 modes providing increasing transmission rates with the lowest
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SNR thresholds. The SNR thresholds corresponding to the selected modes for

each channel scenario are then stored in the LUT.

7.4.4 Switching Algorithm Operation

Once the LUT is constructed, our proposed practical switching algo-

rithm operates as follows. The receiver first calculates the link quality metrics

by measuring the average SNR and the relative condition number (Dλ) of the

channel spatial correlation matrices. These metrics are then input into the

LUT, which maps the link-quality metrics into a link-quality region. In par-

ticular, Dλ is used to select the channel scenario, according to the empirically

derived values reported in Table 7.4. Then, the average SNR is compared

against the SNR thresholds of the selected channel scenario to choose the op-

timal transmission mode, providing the highest throughput for the predefined

target error rate. The mode-selection information is then conveyed to the

transmitter via a reliable low-rate feedback channel.

Note that the switching criterion is derived from the channel statistics

(i.e., average SNR and spatial correlation) rather than instantaneous chan-

nel state information. As such, the proposed method tracks the long-term

channel variations (due to shadowing, path-loss, or different correlation sce-

narios), hereby reducing the amount of feedback required for the adaptive

mode switching. Also, since it is based on statistical knowledge, the algo-

rithm is inherently more robust to practical effects such as imperfect channel

estimation and feedback delays.
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7.4.5 Simulation Results

For the following simulation results we assume a 4 × 4 MIMO system

and a target BER of 0.05. Fig. 7.5 shows the BER versus SNR curves for each

of the transmission modes for typical channel Scenario 4 in Table 7.4. The

BER performance of the adaptive scheme is shown by the thicker solid line.

As the SNR is increased, modes with increasing levels of spectral efficiency

are selected. We clearly see that in all cases the BER of the adaptive scheme

remains below the predefined target, as required.

Figure 7.5: Bit error rate (BER) of the adaptive MIMO transmission scheme
versus fixed BF, D-STTD and SM with different MCS, in channel Scenario 4.

Fig. 7.6 compares the spectral efficiency of the proposed adaptive al-

gorithm, with that of fixed BF, D-STTD, and SM transmission schemes em-

ploying adaptive MCS. Results are presented in typical channel Scenarios 3,

as defined in Table 7.4. We see that, for high SNR, the proposed adaptive
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algorithm yields a spectral efficiency gain of 11 bps/Hz over a non-adaptive

BF scheme. We emphasize that the BER for the adaptive scheme remains

below the predefined target for all levels of spectral efficiency. Note that the

low performance of statistical BF in this case is due to the presence of mul-

tiple clusters for channel Scenario 3, which prevents the channel from having

one dominant spatial direction in narrowband systems. In broadband sys-

tems, where multiple taps are distinguishable both in time and space, better

performance is expected for BF.

Figure 7.6: Spectral efficiency of the adaptive MIMO transmission scheme
versus fixed BF, D-STTD and SM with adaptive MCS, in channel Scenario 3
in [2].

Fig. 7.7 depicts the spectral efficiency curves for the adaptive algorithm

in different channel scenarios. It is possible to see that in low SNR regime

the spectral efficiency improves from Scenario 2 to 4 in Table 7.4 due to the

increasing channel spatial correlation that yields better performance for BF.
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Vice versa, for SNR higher than 5 dB the throughput provided by the adaptive

algorithm tends to decrease from Scenario 2 to 4, since the performance of D-

STTD and SM degenerates as the spatial correlation increases.

Figure 7.7: Spectral efficiency of the adaptive MIMO transmission scheme in
different channel scenarios.

7.5 Adaptation Based on Closed-form BER with BICM

In this section we present a novel low complexity switching strategy

for BICM mode and MIMO transmission scheme selection. Our proposed

switching strategy is based purely on the analytical results of the previous two

sections, and does not require any empirically-generated lookup tables. The

approach is shown to yield significant improvements in system throughput for

the transmit and receive correlated Rayleigh channels we are considering.
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7.5.1 BER Performance Comparison in Correlated Channels

Before presenting the details of the adaptive strategy, we first investi-

gate the relative performance of BICM-SB and BICM-ZF in various correlation

scenarios.

Fig. 7.8 considers 2×2 fully-interleaved systems, and shows BER curves

based on the C-PEP expressions (6.34) for BICM-SB, and (6.56) for BICM-

ZF, which have previously been shown to be tight. For the 2 bits/s/Hz case,

BICM-SB operates with the 1/2 rate code discussed in Section 6.4.4 (and used

throughout this paper) and 16QAM, and BICM-ZF operates with the 1/2 rate

code and QPSK. For the 4 bits/s/Hz case, BICM-SB operates with a 2/3 rate

code (obtained by puncturing the 1/2 rate code above, as outlined in [177])

and 64QAM, whereas BICM-ZF operates with the 1/2 rate code and 16QAM.

As expected, we observe that BICM-ZF degrades with increasing trans-

mit correlation. In contrast, the BER of BICM-SB improves with increasing

transmit correlation. This improvement is due to more energy being focused

in the direction of the SB vector us,max, yielding an SNR gain. The relative

performance is of course the important factor in designing a switching scheme,

and this is highly influenced by the correlation and the spectral efficiency. The

figure shows that for 2 bits/s/Hz, BICM-SB outperforms BICM-ZF in both

correlation scenarios. At 4 bits/s/Hz however, BICM-SB is best for ρtx = 0.7,

and BICM-ZF is best for ρtx = 0.3.
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Figure 7.8: BER curves based on the tight C-PEP expressions (6.34) and (6.56)
for 2 × 2 BICM-SB and BICM-ZF respectively. Two exponential correlated
channel scenarios are presented, with ρrx = 0.1, ρtx = 0.3, and ρrx = 0.1, ρtx =
0.7.

Fig. 7.9 examines in more detail the relative performance of BICM-

SB and BICM-ZF as a function of transmit correlation. The figure shows

the minimum required SNR (or SNR threshold) to achieve a BER of 10−3 for

the 4 bits/s/Hz systems considered in Fig. 7.8. The curves were evaluated

using C-PEP expressions as in Fig. 7.8. Note that, even if one wanted to, it

is infeasible to accurately generate these curves in a practical time-frame via

simulation, since they require inverting the BER versus SNR curves. Hence

our tight efficient analytical expressions are particularly useful here. Results

are presented as a function of ρtx, for three example correlated channels with

ρrx = 0.1, 0.5, and 0.9. Clearly the ZF scheme requires increasing SNR to

achieve the target BER as the transmit correlation increases. The reverse is
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Figure 7.9: SNR thresholds corresponding to a target BER of 10−3 for BICM-
ZF and BICM-SB as a function of ρrx and ρtx. Results are shown for 2 × 2
BICM-ZF with 16QAM and a 1/2 rate code, and BICM-SB with 64QAM and
a 2/3 rate code.

true for the SB scheme. The important observation from a switching algorithm

point of view, is that the curves can cross. For example, for receive correlation

ρrx = 0.1, it is clearly desirable to use BICM-ZF for ρtx ≤ 0.55, and to use

BICM-SB for ρtx > 0.55. Another interesting observation is that both SB and

ZF are negatively affected by increasing receive correlation. This is particularly

significant for ZF.

7.5.2 Analytical BICM Switching Scheme

Clearly there are significant benefits to be gained from switching be-

tween BICM-ZF and BICM-SB depending on the channel correlation and the

SNR. We now propose a low complexity practical switching algorithm to max-
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imize system throughput whilst satisfying a predefined BER.

The throughput ν is calculated for a given BICM mode and MIMO

transmission scheme using

ν = S (1− BER) (7.1)

where S is the spectral efficiency. For a given mode, the spectral efficiencies

are calculated for the SB and ZF transmission schemes according to (6.2) and

(6.3) respectively.

In general terms, we follow a standard adaptive procedure whereby

the receiver first estimates channel parameters, then calculates which mode

will yield the highest throughput, and then conveys that information to the

transmitter via a reliable low-rate feedback link. A key novelty of our scheme

is that we perform switching based on the channel spatial correlation matrix

eigenvalues, and that we switch between the MIMO transmission schemes (SB

and ZF) as well as coding and modulation formats. It is the new closed-form

BER expressions of the previous sections which make this possible.

7.5.3 Switching Between SB and SM

In this section, we consider 2× 2 systems, and employ the eight BICM

modes defined by the IEEE 802.11a standard in [177]. Note, however, that

our algorithm applies equally to any antenna configuration, and for any set of

modes comprising Gray-labeled modulation formats.

Fig. 7.10 shows throughput results for a target BER of 10−3, and for
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Figure 7.10: Throughput achieved by the proposed adaptive algorithm for
a 2 × 2 system with target BER of 10−3, and for correlated channels with
ρrx = ρtx = 0.5. Mode and transmission scheme selection is based on the
tight C-PEP expressions (6.34) and (6.56). Throughputs with optimal mode
selection, and LLC envelope curves, are also given.

correlated channels with ρrx = ρtx = 0.5. The figure shows the throughputs

obtained by BICM-SB and BICM-ZF with optimal mode switching, where the

switching points are calculated based on the actual simulated BER curves.

For comparison, LLC envelope curves (as derived in Section 6.2), are also

shown. The solid line in the figure corresponds to our proposed adaptive

selection algorithm, where the switching points are based on the tight C-PEP

expressions (6.34) and (6.56) for BICM-SB and BICM-ZF respectively. Clearly

our approach achieves near-optimal throughputs for all SNR. As expected,

BICM-SB is selected for low SNRs, and BICM-ZF is selected for high SNRs.

Fig. 7.11 shows the throughputs of the proposed adaptive algorithm in
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Figure 7.11: Throughputs achieved by the proposed adaptive algorithm for a
2×2 system with target BER 10−3, in different exponential correlated channel
scenarios, with ρrx = 0.5, and ρtx values of 0.1, 0.5 and 0.9. Mode and trans-
mission scheme selection is based on the tight C-PEP expressions (6.34) and
(6.56).

various transmit correlation scenarios. For SNRs below 20 dB, the throughputs

improve with increasing transmit correlation, since BICM-SB was selected by

the adaptive algorithm in this low SNR regime. Conversely, for SNRs above

20 dB, the adaptive algorithm selected BICM-ZF, and hence the throughput

degrades with increasing transmit correlation.

Fig. 7.12 compares the selection algorithm based on the tight C-PEP

expressions (6.34) and (6.56), with the selection algorithm based on the sim-

plified C-PEP expressions (6.36) and (6.60). The figure includes throughput

curves corresponding to optimal switching based on actual simulated BERs.

We see that for a target BER of 10−3, both algorithms perform very close to
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Figure 7.12: Throughput comparison of two mode/transmission scheme se-
lection approaches. The first is based on the tight C-PEP expressions (6.34)
and (6.52), the second is based on the simplified expressions (6.36) and (6.59).
Results are shown for 2×2 systems with targets BERs 10−3 and 10−6, and for
channels with ρrx = ρtx = 0.5.

the optimal curve for SNRs ≤ 20 dB. For SNRs above this, the simplified algo-

rithm incurs a noticeable loss. At the lower target BER of 10−6, the simplified

algorithm performs close to the optimal curves for all SNRs. This is because

in this region the ZF scheme is chosen, and the C-PEP expression (6.60) is

tighter at this target BER, in comparison to 10−3, as seen from Fig. 6.5. This

yields more accurate SNR thresholds for all BICM-ZF modes, thereby improv-

ing the throughput achieved by the simplified algorithm when these modes are

employed (i.e. in the high SNR regime).
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7.5.4 Switching Between OSTBC and SM

We now propose an adaptive MIMO transmission algorithm based on

theoretical BER expressions we have just derived. The algorithm switches

between BICM-OSTBC and BICM-SM and exploits the statistical channel

information (i.e., average SNR and channel spatial correlation). To enable

transmission over the wireless link we define a set of transmission modes, which

are combinations of modulation/coding schemes (MCSs) and MIMO transmis-

sion techniques (i.e., OSTBC or SM). We use the eight MCSs proposed in the

IEEE 802.11a standard for wireless local area networks, with increasing values

of data rate (R). The key idea of the algorithm is to compute the theoretical

BER for given channel condition and select the transmission mode that yields

the highest spectral efficiency while satisfying a predefined target BER.

Fig. 7.13 depicts the theoretical BER performance of different modes in

double-sided spatially correlated channels, with ρtx = 0.1 and ρrx = 0.05. The

curves with circles represent the BER for the eight MCSs with BICM-OSTBC

derived from (6.43), and the curves with stars refer to the closed-form BER

expression of BICM-SM in [3]. The performance of the adaptive algorithm

with predefined target BER of 10−6 is depicted with the solid curve. It is

possible to see that, for given transmit/receive spatial correlation, as the SNR

increases the proposed adaptive method switches to the higher order modes

to enhance the spectral efficiency while satisfying the predefined target BER.

Note that in Fig. 7.13 we applied the adaptive algorithm to the theoretical

BER in (6.43) and [3], rather than empirical BER derived from simulations.
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Figure 7.13: BER performance for adaptive MIMO 2x2 systems. The BER
of OSTBC and SM are obtained from the approximations in (6.43) and [3],
respectively. The exponential model is used, with ρtx = 0.1 and ρrx = 0.05.

In practical systems, the switching thresholds can be empirically adjusted to

compensate for the small SNR gap between theoretical and simulated BER

curves shown in Fig. 6.4.

Next, we show the performance of the proposed method in terms of

spectral efficiency, R(1 − BER), for the same target BER of 10−6. We sim-

ulated the propagation channel according to the COST-259 physical channel

model [4] and assumed uniform linear array (ULA) configuration with half-

wavelength element spacing both at the transmitter and receiver. Two differ-

ent radio environments are simulated: pico-cell with generalized office line-of-

sight (GOL) defined with 8 clusters and random generated AS and AOA/AOD;

macro-cell with generalized typical urban (GTU) defined with single cluster,

AS= 10o and angle of arrival/departure of = 0o (i.e., broadside directions).
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Figure 7.14: Spectral efficiency for adaptive MIMO 2x2 systems in differ-
ent propagation scenarios. The MIMO channel is simulated according to the
COST-259 physical channel model [4]. Two channel environments are consid-
ered: “Pico-cell, GOL” and “Macro-cell, GTU”.

The transmit/receive spatial correlation matrices are computed by averaging

the instantaneous MIMO channel over time. Fig. 7.14 shows that in high SNR

regime our proposed adaptive MIMO algorithm doubles the spectral efficiency

of conventional systems employing adaptive MCSs with fixed OSTBC trans-

mission scheme. It is possible to see that the performance of the adaptive

algorithm is better in “Pico-cell, GOL” due to the higher number of clusters

that yield lower spatial correlation.

7.6 Practical Implementation Issues

In the design of practical adaptive MIMO systems the following issues

need to be considered.
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• When the adaptation module is at the transmit side, the receiver needs to

communicate the link-quality metrics (i.e., average SNR and time/frequency/space

selectivity indicators) to the transmitter, resulting in higher feedback

overhead. Alternatively, the adaptation module can be designed at the

receiver such that only the average SNR is fed back to the transmitter.

This approach, however, results in high-complexity receiver for the user

terminal.

• Real time implementations of the proposed adaptive algorithms exploit-

ing the channel spatial selectivity are constrained by the time required

to obtain reliable estimates of the channel spatial correlation matrix.

Through numerical simulations, we observed that at least ten indepen-

dent channel samples are needed to estimate the channel spatial correla-

tion with minimal error. In temporally correlated channels, this condi-

tion of independence is achieved when the channel is sampled at rates of

the order of twice the maximum Doppler frequency of the channel (i.e.,

sampling period of approximately one channel coherence time). For ex-

ample, in indoor propagation environments as for WLANs, the typical

Doppler spread at the carrier frequency 2.4 GHz is of the order of 3

Hz, corresponding to channel coherence time of ∼ 0.1 seconds [43]. In

this channel condition, the time required to obtain reliable estimates of

the channel spatial correlation matrix is approximately one second. Note

that the one-second time period is required only to initialize the estimate

of the channel spatial correlation matrix, while successive estimates can
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be carried out via recursive algorithms with forgetting factor. Hence, one

solution for practical implementations of the proposed adaptive methods

is to initialize the algorithm with a robust transmission mode and enable

the adaptive switching to higher order modes when reliable correlation

estimates are available (i.e., after the one-second time period). We ob-

serve that the adaptation rate of the MIMO transmission modes can

be larger than the rate of adaptation of the channel spatial correlation

matrix.

• The amount of control information sent by the transmitter to enable

mode switching is a function of the adaptation rate. In general, fast

adaptation results in better system performance, since the algorithm is

able to track the short-term channel variations. The high number of

control messages, however, may become impractical for systems with

low-rate control channels or in high Doppler, and statistical adaptation

may be preferable.

• To pre-compute the LUTs for throughput-based adaptive methods via

simulations may be computationally expensive. One way to reduce this

complexity is to rely on theoretical performance analysis of BICM MIMO

systems [174] and empirically derive from that the SNR switching thresh-

olds for different link-quality regions.

• The IEEE 802.16e standard provides the option for precoding transmis-

sions, based on quantized channel information or limited feedback tech-
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niques. The adaptive algorithms described above can be easily extended

to switching between different closed-loop schemes, yielding better BER

performance and higher spectral efficiency, at the expense of larger num-

ber of feedbacks required for the precoders.

• Spatial multiplexing modes require high SNR to be selected by the adap-

tive algorithm, as shown in Table 7.4. In indoor environments (as for

wireless local area netwroks), when the users are close to the access point

(i.e., high SNR condition) and in presence of rich scattering, adaptive

switching to multiplexing mode is a practical solution to increase system

throughput. On the other hand, in outdoor scenarios (as for typical cel-

lular systems) the distribution of the SNR is centered at low values due

to the adverse effect of the path loss and presence of users at the edge of

the cell [178]. In these conditions, adaptive MIMO algorithms may not

provide satisfactory throughput performance, and other solutions such

as precoding schemes for multi-user MIMO systems may be better way

to increase the spectral efficiency.
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Chapter 8

Conclusions

In this dissertation novel MIMO antenna and algorithm design method-

ologies to exploit the channel spatial selectivity are presented. The current

state of research in the area of antenna design and adaptive physical layer

transmission techniques for MIMO communication systems is first reviewed.

Current developments treat antenna and algorithm design independently. The

goal of this dissertation is to propose new methodologies and solutions for

MIMO antenna and algorithm designs that exploit metrics from different layers

to enhance system performance in spatially correlated channels. The proposed

antenna array design employs metrics from microwave and communication

theory, and exploits pattern diversity to reduce the channel spatial correla-

tion. The proposed adaptive algorithm is designed to switch between different

MIMO transmission schemes as a function of the channel spatial correlation

to enhance spectral efficiency.

8.1 Summary

A compact MIMO array design exploiting pattern diversity is first pro-

posed. It is shown through analysis and simulations that pattern diversity may
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yield better performance than space diversity, enabling more compact array

designs. This dissertation also proposed a new methodology to design MIMO

arrays by jointly optimizing antenna theory and communication theoretical

performance metrics.

The performance of MIMO arrays and transmission schemes vary as a

function of the propagation environment. This dissertation described a novel

adaptive technique to switch between different MIMO transmission schemes,

based on the channel statistics (i.e., average SNR and spatial correlation), as

a means to enhance systems performance.

Both these research topics propose new ideas and advances in the design

of wireless communication systems. The proposed antenna design methodol-

ogy will enable compact and robust array solutions suitable for future wireless

devices with limited size constraints. The adaptive transmission method will

enable efficient use of the spectrum, resulting in larger data rate, in future

wireless multiple-antenna systems.

8.2 Future Work

This dissertation presented analysis and practical solutions for MIMO

antenna and adaptive algorithm designs. Future work in this research area

may address the following topics:

Miniaturized designs of MIMO arrays exploiting pattern diversity:

the proposed MIMO array design can be further miniaturized to satisfy more
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restrictive size constraints of wireless communication devises. Possible so-

lutions are printed circuit board (PCB) or planar inverted-F antennas (PI-

FAs) [115, 179, 180]. The analysis on pattern diversity presented in this dis-

sertation provides useful guidelines for these miniaturized designs exploiting

pattern diversity. Moreover, the proposed cross-layer design methodology can

be used to optimize the design of these arrays.

Reconfigurable MIMO arrays: one active research area is reconfigurable

antennas with micro-electro-mechanical system (MEMS) switches [181–184] or

other switching solutions [185–187], where the antenna radiation pattern can

be adaptively reconfigured. Our proposed analysis and design methodology for

MIMO arrays exploiting pattern diversity can be used to optimize the design

of reconfigurable antennas. Additionally, the proposed capacity/BER analysis

and algorithm designs can be extended to define adaptive switching criteria

for reconfigurable arrays.

Multiuser MIMO: the adaptive MIMO algorithm presented in this disserta-

tion is for point-to-point communications. In the context of multiuser systems,

the proposed analysis and algorithm designs can be extended to enable differ-

ent types of services (whether through diversity or multiplexing transmissions)

to different users, depending on their propagation environment and distance

from the centralized transmitter.
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Appendix A

Proof on the Post-Processing SNR of D-STTD

Using H in (5.40), we define

C
4
= H†H =


c1 0 c3 c4
0 c1 −c∗4 c∗3
c∗3 −c4 c2 0
c∗4 c3 0 c2

 (A.1)

where

c1 =
Nr∑

m=1

(|hm,1|2 + |hm,2|2) c2 =
Nr∑

m=1

(|hm,3|2 + |hm,4|2) (A.2)

c3 =
Nr∑

m=1

(h∗m,1hm,3 + hm,2h
∗
m,4) c4 =

Nr∑
m=1

(−h∗m,1hm,4 + hm,2h
∗
m,3).(A.3)

We now show that the first two diagonal entries of C−1 are equal to

each other, and so are the last two diagonal entries. This in turn would mean

that in (5.48), we have γ1 = γ2 and γ3 = γ4.

Note that C in (A.1) can be written in a partitioned form as

C =

[
c1I B
B† c2I

]
(A.4)

with

B
4
=

[
c3 c4
−c∗4 c∗3

]
. (A.5)
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Observe that the matrix B is orthonormal, and

BB† = {|c3|2 + |c4|2}I = B†B. (A.6)

The inverse of C clearly exists and using the formula for the inverse of parti-

tioned matrices [146] is given by

C−1 =

 (
c1I− 1

c2
BB†

)−1
1
c1

B
(

1
c1

B†B− c2I
)−1

1
c1

(
1
c1

B†B− c2I
)−1

B†
(
c2I− 1

c1
B†B

)−1

 (A.7)

=

 (
c1 − (|c3|2+|c4|2)

c2

)−1

I 1
c1

(
(|c3|2+|c4|2)

c1
− c2

)−1

B

1
c1

(
(|c3|2+|c4|2)

c1
− c2

)−1

B†
(
c2 − (|c3|2+|c4|2)

c1

)−1

I

 .(A.8)

Substituting (A.8) into equations (5.48) it is easy to see that γ1 = γ2, γ3 = γ4,

and that the random variables γk (with k = 1, . . . , 4) are identically dis-

tributed. The same results hold even in the case of (5.47). To see this, define

C̃ = INt + γo

Nt
C and note that C̃ can be written in a partitioned matrix form

similar to (A.4), with the corresponding submatrix of C̃ obeying analogous

relations (A.5-A.6). Hence the elements of C̃−1 will also be such that the

first two diagonal elements equal each other, and so do the last two diagonal

elements.
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Appendix B

Derivation of Equation (6.51)

To calculate Ĩ
′
(·) and Ĩ

′′
(·) we manipulate Ĩ(·) in (6.46) as follows. We

first express the inverse in the denominator of (6.46) as1

[INr +Kk,i(s)Λr]
−1 = diag

(
1

1 +Kk,i(s)λr,q

)
(B.1)

where, for convenience, we have defined

Kk,i(s)
∆
=
γEM,is(1− s)

[S−1]k,k

. (B.2)

We also write the determinant in (6.46) as

|INr +Kk,i(s)Λr| =
Nr∏
j=1

(1 +Kk,i(s)λr,j) . (B.3)

Using (B.1) and (B.3) it can be shown that

Ĩk,EM,i
(s) =

trNt−1 (Λr)

trNt−1

(
diag

(
λr,q

1+Kk,i(s)λr,q

))∏Nr

j=1 (1 +Kk,i(s)λr,j)
. (B.4)

We now focus on the denominator in (B.4), which we assign the function

name D(s). The key here is to express D(s) as a polynomial in Kk,i(s), which

1Here we introduce a compact notation to represent the diagonal matrix in terms of the
qth diagonal element.
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will then allow the required derivatives to be evaluated. Expanding the e.s.f.

according to (6.47) gives

D(s) = trNt−1

(
diag

(
λr,q

1 +Kk,i(s)λr,q

)) Nr∏
j=1

(1 +Kk,i(s)λr,j)

=

∑
{α}

Nt−1∏
j=1

(
λr,αj

1 + λr,αj

) Nr∏
j=1

(1 +Kk,i(s)λr,j)

=
∑
{α}

Nt−1∏
j=1

λr,αj

(
Nr−Nt+1∏

j=1

(
1 +Kk,i(s)λr,βj

))
(B.5)

where {β1, . . . , βNr−Nt+1} = {1, . . . , Nr}\α. In order to obtain a polynomial

expression, we use the following generating function expansion [188]

N∏
q=1

(1 + axq) = 1 +
N∑

`=1

a` tr` (diag(xq)) (B.6)

which gives

D(s) = trNt−1 (Λr) +
Nr−Nt+1∑

`=1

Kk,i(s)
`
∑
{α}

(
Nt−1∏
j=1

λr,αj

)
tr`

(
diag

(
λr,βq

))
.

(B.7)

Finally, substituting D(s) as the denominator in (B.4) we obtain the simplified

expression

Ĩk,EM,i
(s) =

(
1 +

Nr−Nt+1∑
`=1

Kk,i(s)
`C`(Λr)

)−1

(B.8)

where we have defined the auxiliary constants

C`(Λr)
∆
=
∑
{α}

(
Nt−1∏
j=1

λr,αj

)
tr`

(
diag

(
λr,βq

))
(B.9)

for ` = 1, . . . , Nr −Nt + 1. Now, using (B.8), we easily evaluate Ĩ
′

k,EM,i
(ŝ) and

Ĩ
′′

k,EM,i
(ŝ), and perform some simple algebra to obtain the desired result.
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